2022年河北省唐山市滦州市八年级数学第一学期期末调研试题含解析_第1页
2022年河北省唐山市滦州市八年级数学第一学期期末调研试题含解析_第2页
2022年河北省唐山市滦州市八年级数学第一学期期末调研试题含解析_第3页
2022年河北省唐山市滦州市八年级数学第一学期期末调研试题含解析_第4页
2022年河北省唐山市滦州市八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系中,已知点A(2,m)和点B(n,-3)关于y轴对称,则的值是()A.-1 B.1 C.5 D.-52.如图,下列各式中正确的是()A. B.C. D.3.已知A,B两点关于轴对称,若点A坐标为(2,-3),则点B的坐标是()A.(2,-3) B.(-2,3) C.(-2,-3) D.(2,3)4.已知等腰三角形的两边长分别为2cm和4cm,则它的周长为()A.8B.10C.8或10D.65.在,-1,,这四个数中,属于负无理数的是()A. B.-1 C. D.6.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90° B.105° C.120° D.135°7.如图,在四边形中,,,,,则四边形的面积是()A. B.C. D.8.如图,若,则下列结论错误的是()A. B. C. D.9.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤010.在中,,,第三边的取值范围是()A. B. C. D.11.下列分式与分式相等的是()A. B. C. D.12.已知点(,3),B(,7)都在直线上,则的大小关系为()A. B. C. D.不能比较二、填空题(每题4分,共24分)13.在中,是高,若,则的度数为______.14.已知关于的分式方程的解是非负数,则的取值范围是__________.15.在平面直角坐标系中,,直线与轴交于点,与轴交于点为直线上的一个动点,过作轴,交直线于点,若,则点的横坐标为__________.16.若多项式x2+pxy+qy2=(x-3y)(x+3y),则P的值为____.17.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.18.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC=cm.三、解答题(共78分)19.(8分)在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;(2)连接DE,如图②,求证:BD2+CD2=2AD2(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=,CD=1,则AD的长为▲.(直接写出答案)20.(8分)如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=10cm,若点M从点B出发以2cm/s的速度向点A运动,点N从点A出发以1cm/s的速度向点C运动,设M、N分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AM、AN的长;(2)当t为何值时,△AMN是以MN为底边的等腰三角形?(3)当t为何值时,MN∥BC?并求出此时CN的长.21.(8分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B,C不重合),如图1,求证:CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.22.(10分)如图,一条直线分别与直线、直线、直线、直线相交于点,且,.求证:.23.(10分)如图,已知在中,,,,是上的一点,,点从点出发沿射线方向以每秒个单位的速度向右运动.设点的运动时间为.连结.(1)当秒时,求的长度(结果保留根号);(2)当为等腰三角形时,求的值;(3)过点做于点.在点的运动过程中,当为何值时,能使?24.(10分)(1)化简:(2)设S=,a为非零常数,对于每一个有意义的x值,都有一个S的值对应,可得下表:x…﹣3﹣2﹣113567…S…22…仔细观察上表,能直接得出方程的解为.25.(12分)已知,如图所示,在中,.(1)作的平分线交于点;(要求:尺规作图,保留作图痕迹,不写作法.)(2)若,,求的长.26.为缓解用电紧张,龙泉县电力公司特制定了新的用电收费标准:每月用电量x(千瓦时)与应付电费y(元)的关系如图所示.(1)根据图象求出y与x之间的函数关系式;(2)当用电量超过50千瓦时时,收费标准是怎样的?

参考答案一、选择题(每题4分,共48分)1、D【分析】利用“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后代入代数式进行计算即可得解.【详解】解:∵A(2,m)和B(n,-3)关于y轴对称,∴m=-3,n=-2,∴m+n=-3-2=-1.故选:D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、D【解析】试题分析:延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D.考点:平行线的性质.3、D【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数即可得答案.【详解】∵A,B两点关于轴对称,点A坐标为(2,-3),∴点B坐标为(2,3),故选:D.【点睛】本题考查了关于x轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.4、B【解析】题目给出等腰三角形有两条边长为2和4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当2是腰时,2,2,4不能组成三角形,应舍去;当4是腰时,4,4,2能够组成三角形.∴周长为10cm,故选B.【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5、D【分析】根据小于零的无理数是负无理数,可得答案.【详解】解:是负无理数,

故选:D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6、D【分析】根据对称性可得,,即可求解.【详解】观察图形可知,所在的三角形与3所在的三角形全等,

,

又,

.故选D.【点睛】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.7、A【分析】如下图,连接AC,在Rt△ABC中先求得AC的长,从而可判断△ACD是直角三角形,从而求得△ABC和△ACD的面积,进而得出四边形的面积.【详解】如下图,连接AC∵AB=BC=1,AB⊥BC∴在Rt△ABC中,AC=,∵AD=,DC=2又∵∴三角形ADC是直角三角形∴∴四边形ABCD的面积=+2=故选:A.【点睛】本题考查勾股定理的逆定理,遇到此类题型我们需要敏感一些,首先就猜测△ADC是直角三角形,然后用勾股定理逆定理验证即可.8、D【分析】根据“全等三角形的对应角相等、对应边相等”的性质进行判断并作出正确的选择.【详解】解:A、∠1与∠2是全等三角形△ABC≌△CDA的对应角,则,故本选项不符合题意;

B、线段AC与CA是全等三角形△ABC≌△CDA的对应边,则,故本选项不符合题意;

C、∠B与∠D是全等三角形△ABC≌△CDA的对应角,则∠B=∠D,故本选项不符合题意;

D、线段BC与DC不是全等三角形△ABC≌△CDA的对应边,则BC≠DC,故本选项符合题意;

故选:D.【点睛】本题考查了全等三角形的性质.利用全等三角形的性质时,一定要找对对应角和对应边.9、D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.10、D【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边的边长的取值范围.【详解】∵AB=3,AC=5,∴5-3<BC<5+3,即2<BC<8,故选D.【点睛】考查了三角形三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握三角形的三边关系是解题关键.11、B【分析】根据分式的基本性质即可求出答案.【详解】解:A、是最简分式,与不相等,故选项错误;B、=与相等,故选项正确;C、是最简分式,与不相等,故选项错误;D、=与不相等,故选项错误;故选B.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.12、A【分析】根据一次函数的性质进行求解即可.【详解】∵∴∴y随着x的增大而减小∴,故选:A.【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的增减性是解决本题的关键.二、填空题(每题4分,共24分)13、65°或25°【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当为锐角三角形时:∠BAC=90°-40°=50°,

∴∠C=(180°-50°)=65°;②当为钝角三角形时:∠BAC=90°+40°=130°,

∴∠C=(180°-130°)=25°;

故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.14、且【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【详解】去分母得,m−1=x−1,解得x=m−2,由题意得,m−2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠1,所以m的取值范围是m≥2且m≠1.故答案为:m≥2且m≠1.【点睛】本题考查的是分式方程的解法和一元一次不等式的解法,理解分式方程的增根的判断方法是解题的关键.15、2或【分析】先直线AB的解析式,然后设出点P和点Q的坐标,根据列方程求解即可.【详解】设直线AB的解析式为y=kx+b,把A(3,0),B(0,3)代入得,解得,∴y=-x+3,把x=0代入,得,∴D(0,1),设P(x,2x+1),Q(x,-x+3)∵,∴,解得x=2或x=,∴点的横坐标为2或.故答案为:2或.【点睛】本题考查了待定系数法求一次函数解析式,坐标图形的性质,以及两点间的距离,根据两点间的距离列出方程是解答本题的关键.16、1【分析】根据平方差公式,可得相等的整式,根据相等整式中相同项的系数相等,可得答案.【详解】解:由x2+pxy+qy2=(x-3y)(x+3y)得,x2+pxy+qy2=(x-3y)(x+3y)=x2-9y2,p=1,q=-9,故答案为:1.【点睛】本题考查了平方差公式,利用平方差公式得出相等的整式是解题关键.17、17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形1=S大正方形=2,S正方形C+S正方形D=S正方形1,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=2.∴正方形D的面积=2-8-10-14=17(cm1).18、1.【详解】解:∵AB的垂直平分线交AB于D,∴AE=BE又△EBC的周长为21cm,即BE+CE+BC=21∴AE+CE+BC=21又AE+CE=AC=13cm所以BC=21-13=1cm.故答案为:1.考点:线段垂直平分线的性质.三、解答题(共78分)19、(1)BC=DC+EC,理由见解析;(2)见解析;(3)【分析】(1)根据本题中的条件证出△BAD≌△CAE(SAS),得到BD=CE,再根据条件即可证出结果.(2)由(1)中的条件可得∠DCE=∠ACE+∠ACB=90°,所以CE2+CD2=ED2,可推出BD2+CD2=,再根据勾股定理可得出结果.(3)作AE⊥AD,使AE=AD,连接CE,DE,可推出△BAD≌△CAE(SAS),所以BD=CE=,再根据勾股定理求得DE.【详解】解:(1)结论:BC=DC+EC理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC.(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=∠ACE+∠ACB=90°,∴CE2+CD2=ED2,即:BD2+CD2=ED2;在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴ED2=2AD2;∴BD2+CD2=2AD2;(3)AD的长为(学生直接写出答案).作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE.∴△BAD≌△CAE(SAS),∴BD=CE=,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE2=CE2-CD2=()2-12=12,∴DE=2,∵∠DAE=90°,AD2+AE2=DE2,∴AD=.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.20、(1)AM=10﹣2t,AN=t;(2)t=;(3)当t=时,MN∥BC,CN=.【解析】(1)根据直角三角形的性质即可得到结论;(2)根据等腰三角形的性质得到AM=AN,列方程即可得到结论.【详解】(1)∵∠C=90°,∠A=60°,∴∠B=30°,∵AB=10cm,∴AM=AB﹣BM=10﹣2t,AN=t;(2)∵△AMN是以MN为底的等腰三角形,∴AM=AN,即10﹣2t=t,∴当t=时,△AMN是以MN为底边的等腰三角形;(3)当MN⊥AC时,MN∥BC,∵∠C=90°,∠A=60°,∴∠B=30°,∵MN∥BC,∴∠NMA=30°,∴AN=AM,∴t=(10﹣2t),解得t=,∴当t=时,MN∥BC,CN=5﹣×1=.【点睛】本题考查的是等腰三角形的判定及平行线的判定与性质,熟知等腰三角形的两腰相等是解答此题的关键.21、(1)见解析;(2)仍然成立,理由见解析【分析】(1)要证明CF=BD,只要证明△BAD≌△CAF即可,根据等腰三角形的性质和正方形的性质可以证明△BAD≌△CAF,从而可以证明结论成立;(2)首先判断CF=BD仍然成立,然后根据题目中的条件,同(1)中的证明方法一样,本题得以解决.【详解】(1)证明:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠DAC+∠CAF=90°,∵∠BAC=90°,∴∠DAC+∠BAD=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论仍然成立.理由:∵∠BAC=∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD.【点睛】本题考查了正方形的性质、等腰三角形的性质和全等三角形的判定与性质,此题难度适中,注意利用公共角转化角相等作为证明全等的条件.22、见解析【分析】由∠1=∠2利用“内错角相等,两直线平行”可得出AE∥DF,再利用“两直线平行,同位角相等”可得出∠AEC=∠D,结合∠A=∠D可得出∠AEC=∠A,利用“内错角相等,两直线平行”可得出AB∥CD,再利用“两直线平行,内错角相等”可证出∠B=∠C.【详解】解:证明:∵∠1=∠2,

∴AE∥DF,

∴∠AEC=∠D.

又∵∠A=∠D,

∴∠AEC=∠A,

∴AB∥CD,

∴∠B=∠C.【点睛】本题考查了平行线的判定与性质,牢记各平行线的判定定理及性质定理是解题的关键.23、(1)2;(2)4或16或2;(3)2或1.【分析】(1)根据题意得BP=2t,从而求出PC的长,然后利用勾股定理即可求出AP的长;(2)先利用勾股定理求出AB的长,然后根据等腰三角形腰的情况分类讨论,分别列出方程即可求出t的值;(3)根据点P的位置分类讨论,分别画出对应的图形,根据勾股定理求出AE,分别利用角平分线的性质和判定求出AP,利用勾股定理列出方程,即可求出t的值.【详解】(1)根据题意,得BP=2t,∴PC=16-2t=16-2×3=10,∵AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得:t=4;若AB=AP,∴此时AC垂直平分BP则BP=32,2t=32,解得:t=16;若PA=PB=2t,CP=16-2t∵PA2=CP2+AC2则(2t)2=(16-2t)2+82,解得:t=2.答:当△ABP为等腰三角形时,t的值为4、16、2.(3)若P在C点的左侧,连接PDCP=16-2t∵DE=DC=3,AC=8,,DC⊥PC∴PD平分∠EPC,AD=AC-DC=2根据勾股定理可得AE=,∴∠EPD=∠CPD∴∠EDP=90°-∠EPD=90°-∠CPD=∠CDP∴DP平分∠EDC∴PE=CP=16-2t∴AP=AE+EP=20-2t∵PA2=CP2+AC2则(20-2t)2=(16-2t)2+82,解得:t=2;若P在C点的右侧,连接PDCP=2t-16∵DE=DC=3,AC=8,,DC⊥PC∴PD平分∠EPC,AD=AC-DC=2根据勾股定理可得AE=∴∠EPD=∠CPD∴∠EDP=90°-∠EPD=90°-∠CPD=∠CDP∴DP平分∠EDC∴PE=CP=2t-16∴AP=AE+EP=2t-12∵PA2=CP2+AC2则(2t-12)2=(2t-16)2+82,解得:t=1;答:当t为2或1时,能使DE=CD.【点睛】此题考查的是勾股定理的应用、等腰三角形的定义、角平分线的性质和判定,掌握利用勾股定理解直角三角形、根据等腰三角形腰的情况分类讨论和角平分线的性质和判定是解决此题的关键.24、(1);(2)x=7或x=﹣1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论