版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()A.85 B.84 C.57 D.562.已知,则()A. B. C. D.3.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.014.设是等差数列的前n项和,且,则()A. B. C.1 D.25.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有()种.A.360 B.240 C.150 D.1206.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则()A. B. C. D.7.已知数列中,,且当为奇数时,;当为偶数时,.则此数列的前项的和为()A. B. C. D.8.已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则()A.1194 B.1695 C.311 D.10959.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.20 B.27 C.54 D.6410.设集合,,若,则()A. B. C. D.11.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()A. B. C. D.12.设命题函数在上递增,命题在中,,下列为真命题的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知多项式满足,则_________,__________.14.己知双曲线的左、右焦点分别为,直线是双曲线过第一、三象限的渐近线,记直线的倾斜角为,直线,,垂足为,若在双曲线上,则双曲线的离心率为_______15.如图,在平行四边形中,,,则的值为_____.16.已知函数为奇函数,,且与图象的交点为,,…,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.18.(12分)已知数列和满足,,,,.(Ⅰ)求与;(Ⅱ)记数列的前项和为,且,若对,恒成立,求正整数的值.19.(12分)已知在中,角、、的对边分别为,,,,.(1)若,求的值;(2)若,求的面积.20.(12分)若,且(1)求的最小值;(2)是否存在,使得?并说明理由.21.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.22.(10分)如图,在四面体中,.(1)求证:平面平面;(2)若,二面角为,求异面直线与所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.2、C【解析】
利用诱导公式得,,再利用倍角公式,即可得答案.【详解】由可得,∴,∴.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.3、D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.4、C【解析】
利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,,.故选:C【点睛】本小题主要考查等差数列的性质,属于基础题.5、C【解析】
可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可.【详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有.∴共有结对方式60+90=150种.故选:C.【点睛】本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为.6、C【解析】
求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以.故选:C【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.7、A【解析】
根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【详解】当为奇数时,,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.8、D【解析】
确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和.【详解】时,,所以数列的前35项和中,有三项3,9,27,有32项,所以.故选:D.【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础.解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的.9、B【解析】
设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。10、A【解析】
根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.11、C【解析】
根据抛物线方程求得点的坐标,根据轴、列方程,解方程求得的值.【详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【点睛】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.12、C【解析】
命题:函数在上单调递减,即可判断出真假.命题:在中,利用余弦函数单调性判断出真假.【详解】解:命题:函数,所以,当时,,即函数在上单调递减,因此是假命题.命题:在中,在上单调递减,所以,是真命题.则下列命题为真命题的是.故选:C.【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】∵多项式满足∴令,得,则∴∴该多项式的一次项系数为∴∴∴令,得故答案为5,7214、【解析】
由,则,所以点,因为,可得,点坐标化简为,代入双曲线的方程求解.【详解】设,则,即,解得,则,所以,即,代入双曲线的方程可得,所以所以解得.故答案为:【点睛】本题主要考查了直线与双曲线的位置关系,及三角恒等变换,还考查了运算求解的能力和数形结合的思想,属于中档题.15、【解析】
根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.【详解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案为:﹣1.【点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.16、18【解析】
由题意得函数f(x)与g(x)的图像都关于点对称,结合函数的对称性进行求解即可.【详解】函数为奇函数,函数关于点对称,,函数关于点对称,所以两个函数图象的交点也关于点(1,2)对称,与图像的交点为,,…,,两两关于点对称,.故答案为:18【点睛】本题考查了函数对称性的应用,结合函数奇偶性以及分式函数的性质求出函数的对称性是解决本题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】
(1)消去参数可得圆的直角坐标方程,再根据,,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆:,消去参数得:,即:,∵,,.∴,.(2)∵直线:的极坐标方程为,当时.即:,∴或.∴或,∴直线的倾斜角为或.【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.18、(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得为等比数列,再利用前项和与通项的关系求解的通项公式即可.(Ⅱ)由题可知要求的最小值,再分析的正负即可得随的增大而增大再判定可知即可.【详解】(Ⅰ)因为,故是以为首项,2为公比的等比数列,故.又当时,,解得.当时,…①…②①-②有,即.当时也满足.故为常数列,所以.即.故,(Ⅱ)因为对,恒成立.故只需求的最小值即可.设,则,又,又当时,时.当时,因为.故.综上可知.故随着的增大而增大,故,故【点睛】本题主要考查了根据数列的递推公式求解通项公式的方法,同时也考查了根据数列的增减性判断最值的问题,需要根据题意求解的通项,并根据二项式定理分析其正负,从而得到最小项.属于难题.19、(1)7(2)14【解析】
(1)在中,,可得,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【详解】(1)在中,,,,,,.(2),,,解得,.【点睛】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.20、(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和积转化可求,利用基本不等式可将转化为,由不等式的传递性,可求的最小值;(2)由基本不等式可求的最小值为,而,故不存在.【详解】(1)由,得,且当时取等号.故,且当时取等号.所以的最小值为;(2)由(1)知,.由于,从而不存在,使得成立.【考点定位】基本不等式.21、(1),;(2).【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.【详解】(1)由得,故直线的普通方程是.由,得,代入公式得,得,故曲线的直角坐标方程是;(2)因为曲线的圆心为,半径为,圆心到直线的距离为,则弦长.又到直线的距离为,所以.【点睛】本题考查参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线与圆中三角形面积的计算,考查计算能力,属于中等题.22、(1)证明见解析(2)【解析】
(1)取中点连接,得,可得,可证,可得,进而平面,即可证明结论;(2)设分别为边的中点,连,可得,,可得(或补角)是异面直线与所成的角,,可得,为二面角的平面角,即,设,求解,即可得出结论.【详解】(1)证明:取中点连接,由则,则,故,,平面,又平面,故平面平面(2)解法一:设分别为边的中点,则,(或补角)是异面直线与所成的角.设为边的中点,则,由知.又由(1)有平面,平面,所以为二面角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孩子抚养费支付协议书
- 产品买卖合同书(杯子)
- 建筑施工钢材采购合同范本
- 儿童摄影合同
- 姜堰区劳动用工合同
- 中建2024建筑工程专项验收指导手册(试行)
- 高三一轮复习课件 地质构造与构造地貌 (从不同尺度)
- 高中地理选修三43旅游常识和导游基础知识练习
- 浙江省杭州市二中钱江校区2023-2024学年高一下学期寒假作业检测(开学考试)数学试卷
- 工程项目施工现场自纠自查报告
- 中小学教师高级职称面试讲课答辩题目及答案(分五类共60题)
- 2024版新房屋装修贷款合同范本
- 少先队辅导员笔试题库附有答案
- 2024-2029年电信API平台行业市场现状供需分析及市场深度研究发展前景及规划投资研究报告
- 2024年中考语文三轮冲刺-第四讲+中考作文结构+横线式课件
- 冠脉介入进修汇报
- 蒋诗萌小品《谁杀死了周日》台词完整版
- 铁道运输实训总结报告
- 小学生生涯规划班会课教案设计
- 人教部编版五年级上册语文第三单元测试卷(含答案解析)
- 抗球虫药1课件
评论
0/150
提交评论