版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,若,则的度数是()A. B. C. D.2.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x,乙持钱为y,则可列方程组A. B. C. D.3.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将,换算成十进制数应为:;.按此方式,将二进制换算成十进制数和将十进制数13转化为二进制的结果分别为()A.9, B.9, C.17, D.17,5.如图,图中直角三角形共有A.1个 B.2个 C.3个 D.4个6.在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一 B.二 C.三 D.四7.若是完全平方式,则m的值等于()A.1或5 B.5 C.7 D.7或8.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10 B.8 C.6 D.49.下列各图中,,,为三角形的边长,则甲,乙,丙三个三角形中和左侧全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙10.若不等式组,只有三个正整数解,则a的取值范围为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图是的平分线,于点,,,则的长是__________.12.计算的结果等于.13.如图,小颖同学折叠一个直角三角形的纸片,使与重合,折痕为,若已知,,则的长为________.14.平行四边形中,,,则的取值范围是________.15.计算:|-2|=______.16.在中,,,则这个三角形是___________三角形.17.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.18.如图,在中,,于,平分交于,交于,,,下列结论:①;②;③;④,其中正确的结论有____________.(填序号)三、解答题(共66分)19.(10分)已知△.(1)在图中用直尺和圆规作出的平分线和边的垂直平分线交于点(保留作图痕迹,不写作法).(2)在(1)的条件下,若点、分别是边和上的点,且,连接求证:;(3)如图,在(1)的条件下,点、分别是、边上的点,且△的周长等于边的长,试探究与的数量关系,并说明理由.20.(6分)欧几里得是古希腊著名数学家、欧氏几何学开创者.下面问题是欧几里得勾股定理证法的一片段,同学们,让我们一起来走进欧几里得的数学王国吧!已知:在Rt△ABC,∠A=90°,分别以AB、AC、BC为边向外作正方形,如图,连接AD、CF,过点A作AL⊥DE分别交BC、DE于点K、L.(1)求证:△ABD≌△FBC(2)求证:正方形ABFG的面积等于长方形BDLK的面积,即:21.(6分)计算(1)解方程:(2)22.(8分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?23.(8分)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国智造”,高铁事业是“中国智造”的典范.一般的高铁包括G字头的高速动车组以及D字头的动车组.由长沙到北京的高铁G84的平均速度是动卧D928的平均速度的1.2倍,行驶相同的路程1500千米,G84少用1个小时.(1)求动卧D928的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D928二等座的票价为491元/张,G84二等座的票价为649元/张,如果你有机会给有关部门提一个合理化建议,使G84的性价比与D928的性价比相近,你如何建议,为什么?24.(8分)如图是某机器中的根空心钢立柱,高为h米,外半径为R米,内半径为r米,每立方米钢的重量为7.8吨,求:m根这样的空心钢立柱的总质量.25.(10分)是等边三角形,作直线,点关于直线的对称点为,连接,直线交直线于点,连接.(1)如图①,求证:;(提示:在BE上截取,连接.)(2)如图②、图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则__________.26.(10分)一次函数y=kx+b.当x=﹣3时,y=0;当x=0时,y=﹣4,求k与b的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先根据等边对等角求出,再根据外角的性质,利用即可求解.【详解】解:又故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角,正确的分析题意,进行角的计算,即可求出正确答案.2、B【分析】由乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,列出方程组求解即可.【详解】解:由题意得:,故选B.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是理解题意列出方程组.3、D【分析】根据各象限内点的坐标特征解答即可.【详解】∵横坐标为正,纵坐标为负,∴点在第四象限,故选:D.【点睛】本题考查的是点的坐标与象限的关系,熟记各象限内点的坐标特征是解答本题的关键.4、A【分析】首先理解十进制的含义,然后结合有理数混合运算法则及顺序进一步计算即可.【详解】将二进制换算成十进制数如下:;将十进制数13转化为二进制数如下:……1,……0,……1,∴将十进制数13转化为二进制数后得,故选:A.【点睛】本题主要考查了有理数运算,根据题意准确理解十进制与二进制的关系是解题关键.5、C【分析】有一个角是直角的三角形是直角三角形.【详解】解:如图,直角三角形有:△ABC、△ABD、△ACD.故选C.【点睛】本题考查直角三角形的定义.掌握直角三角形的定义是关键,要做到不重不漏.6、B【分析】根据各象限内点的坐标特征解答.【详解】点P(-2,3)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、D【分析】根据完全平方公式,首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【详解】解:∵多项式是完全平方式,∴,∴解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8、C【分析】延长AP交BC于E,根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC.【详解】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×12=6.故选C.【点睛】本题考查了全等三角形的判定与性质,三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线构造出全等三角形是解题的关键.9、B【分析】根据全等三角形的判定定理逐图判定即可.【详解】解:∵甲图为不能全等;乙图为;丙图为∴乙、丙两图都可以证明.故答案为B.【点睛】本题考查了全等三角形的判定定理,牢记AAS、SAS、ASA、SSS可证明三角形全等,AAA、SSA不能证明三角形全等是解答本题的关键.10、A【解析】解不等式组得:a<x≤3,因为只有三个整数解,∴0≤a<1;故选A.二、填空题(每小题3分,共24分)11、1【分析】过点D作DF⊥AC于点F,如图,根据角平分线的性质可得DF=DE=2,再利用三角形的面积公式即可求出结果.【详解】解:过点D作DF⊥AC于点F,如图,∵是的平分线,,∴DF=DE=2,∵,∴AC=1.故答案为:1.【点睛】本题主要考查了角平分线的性质和三角形的面积,属于基础题型,熟知角平分线上的点到这个角两边的距离相等是解题的关键.12、【分析】根据立方根的定义求解可得.【详解】解:=.故答案为.【点睛】本题主要考查立方根,掌握立方根的定义是解题的关键.13、【分析】连接BE,根据线段垂直平分线性质可得BE=AE,再由勾股定理可得CB²+CE²=BE².【详解】解:连接BE由折叠可知,DE是AB的垂直平分线
∴BE=AE
设CE为x,则BE=AE=8-x
在Rt△BCE中,
由勾股定理,得
CB²+CE²=BE²
∴6²+x²=(8-x)²
解得∴CE=【点睛】考核知识点:勾股定理.根据折叠的性质,把问题转化为利用勾股定理来解决.14、【分析】根据平行四边形的性质求出OA、OB,根据三角形的三边关系定理得到OA-OB<AB<OA+OB,代入求出即可.【详解】解析:四边形是平行四边形,,,,,在中,,,.即的取值范围为.故答案为:.【点睛】本题考查了对平行四边形的性质,三角形的三边关系定理等知识点的理解和掌握,求出OA、OB后得出OA-OB<AB<OA+OB是解此题的关键.15、0【分析】先化简绝对值,以及求立方根,然后相减即可.【详解】解:;故答案为0.【点睛】本题考查了立方根和绝对值的定义,解题的关键是正确进行化简.16、钝角【分析】根据三角形的内角和求出∠C即可判断.【详解】在中,,,∴∴这个三角形是钝角三角形,故答案为:钝角.【点睛】此题主要考查三角形的分类,解题的关键是熟知三角形的内角和.17、1.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案为1.【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.18、①②③④【分析】只要证明∠AFE=∠AEF,四边形FGCH是平行四边形,△FBA≌△FBH即可解决问题.【详解】∵∠FBD=∠ABF,∠FBD+∠BFD=90°,∠ABF+∠AEB=90°∴∠BFD=∠AEB∴∠AFE=∠AEB∴AF=AE,故①正确∵FG∥BC,FH∥AC∴四边形FGCH是平行四边形∴FH=CG,FG=CH,∠FHD=∠C∵∠BAD+∠DAC=90°,∠DAC+∠C=90°∴∠BAF=∠BHF∵BF=BF,∠FBA=∠FBH∴△FBA≌△FBH(AAS)∴FA=FH,AB=BH,故②正确∵AF=AE,FH=CG∴AE=CG∴AG=CE,故③正确∵BC=BH+HC,BH=BA,CH=FG∴BC=AB+FG,故④正确故答案为:①②③④【点睛】本题主要考查全等三角形的判定和性质,关键是选择恰当的判定条件,同时要注意利用公共边、公共角进行全等三角形的判定.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)与的数量关系是,理由见解析.【分析】(1)利用基本作图作∠ABC的平分线;利用基本作图作BC的垂直平分线,即可完成;
(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,用角平分线的性质证明OH=OG,BH=BG,继而证明EH=DG,然后可证明,于是可得到OE=OD;(3)作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,利用(2)得到CD=BE,,OE=OD,,,可证明,故有,由△的周长=BC可得到DF=EF,于是可证明,所以有,然后可得到与的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,∵BO平分∠ABC,OH⊥AB,OG垂直平分BC,
∴OH=OG,CG=BG,∵OB=OB,∴,
∴BH=BG,
∵BE=CD,
∴EH=BH-BE=BG-CD=CG-CD=DG,在和中,,∴,
∴OE=OD.(3)与的数量关系是,理由如下;如图,作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为CD=BE,所以且OE=OD,∴,,∴,∴,∵△的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△和△中,,∴,
∴,∴,∴.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.20、(1)见解析;(2)见解析【分析】(1)根据正方形的性质可得AB=FB,BD=BC,∠FBA=∠CBD=90°,从而证出∠FBC=∠ABD,然后利用SAS即可证出结论;(2)根据平行线之间的距离处处相等可得,然后根据全等三角形的性质可得,从而证出结论.【详解】(1)证明:∵四边形ABFG、四边形BDEC是正方形∴AB=FB,BD=BC,∠FBA=∠CBD=90°∴∠FBA+∠ABC=∠CBD+∠ABC即∠FBC=∠ABD在△ABD和△FBC中∴△ABD≌△FBC(SAS)(2)∵GC∥FB,AL∥BD∴,∵△ABD≌△FBC∴∴【点睛】此题考查的是正方形的性质、全等三角形的判定及性质和平行线公理,掌握正方形的性质、全等三角形的判定及性质和平行线之间的距离处处相等是解决此题的关键.21、(1);(2).【分析】(1)两边同时乘最简公分母可把分式方程化为整式方程来解答;(2)利用零指数幂、算术平方根的知识化简,再根据实数的运算法则计算即可.【详解】解:(1)去分母,得.去括号,得解得,经检验,是原方程的解;(2)【点睛】本题考查了实数的混合运算和解分式方程,熟悉相关性质,并对分式方程进行检验是解题的关键,.22、(1)计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)需调配36座客车3辆,22座客车5辆.【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量-2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【详解】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,
依题意,得:,
解得:.
答:计划调配36座新能源客车6辆,该大学共有218名志愿者.
(2)设需调配36座客车m辆,22座客车n辆,
依题意,得:36m+22n=218,
∴n=.
又∵m,n均为正整数,
∴.
答:需调配36座客车3辆,22座客车5辆.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.23、(1)1千米/时;(2)为了G84的性价比与D928的性价比相近,建议适当降低G84二等座票价【分析】(1)设D928的平均速度为x千米/时,则G84的平均速度为1.2x千米/时,根据时间=路程÷速度,结合行驶相同的路程1500千米,G84少用1个小时,即可得出关于x的分式方程,解之检验后即可得出结论;(2)利用“速度与票价的比值”求出这两种列车的性价比,进行比较即可得出结论.【详解】(1)设D928的平均速度为x千米/时,则G84的平均速度为1.2x千米/时.由题意:=1,解得x=1.经检验:x=1,是分式方程的解.答:D928的平均速度1千米/时.(2)G84的性价比=≈0.46,D928的性价比=≈0.51,∵0.51>0.46,∴为了G84的性价比与D928的性价比相近,建议适当降低G84二等座票价.【点睛】本题考查了分式方程的应用.找准等量关系,正确列出分式方程是解题的关键.24、7.8πhm(R2﹣r2)吨【分析】利用圆柱的体积公式求出钢立柱的体积,根据每立方米钢的重量为7.8吨计算即可.【详解】解:1根钢立柱的体积为:πh(R2﹣r2),故m根这样的空心钢立柱的总质量为:7.8πhm(R2﹣r2)吨.【点睛】本题主要考查了圆柱的体积,解题的关键是正确的求出1根钢管的体积.25、(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.1或4.1【分析】(1)在BE上截取,连接,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE=BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE=BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE=CF+EF,即可解决问题;(3)根据线段,,,BD之间的数量关系分别列式计算即可解决问题.【详解】(1)证明:在BE上截取,连接,
在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
设∠EAC=∠DAE=x.
∵AD=AC=AB,
∴∠D=∠ABD=(180°-∠BAC-2x)=60°-x,
∴∠AEB=60-x+x=60°.
∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,
∴CE+AE=BF+FE=BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国伏格列波糖数据监测研究报告
- 2025-2030年(全新版)中国纤维食品市场未来发展趋势及前景调研分析报告
- 2025-2030年中国顺酐市场运行动态分析与营销策略研究报告
- 2025-2030年中国防水建材市场运行现状及发展前景预测报告
- 2025-2030年中国轮毂电机驱动电动汽车行业未来发展趋势及前景调研分析报告
- 2024电子商务平台租赁合同3篇
- 2024年跨区域能源供应合同
- 2024版混凝土买卖合同标准范本
- 塑料在通讯设备材料的应用考核试卷
- 园林金属工具企业文化建设考核试卷
- 对讲机外壳注射模设计 模具设计及制作专业
- 2024年四川省德阳市中考道德与法治试卷(含答案逐题解析)
- 施工现场水电费协议
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 真人cs基于信号发射的激光武器设计
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 四年级上册递等式计算练习200题及答案
- 法院后勤部门述职报告
- 2024年国信证券招聘笔试参考题库附带答案详解
评论
0/150
提交评论