![生成式人工智能专利态势报告_第1页](http://file4.renrendoc.com/view3/M02/2B/23/wKhkFmafWTeAGWGDAADOwy79p64178.jpg)
![生成式人工智能专利态势报告_第2页](http://file4.renrendoc.com/view3/M02/2B/23/wKhkFmafWTeAGWGDAADOwy79p641782.jpg)
![生成式人工智能专利态势报告_第3页](http://file4.renrendoc.com/view3/M02/2B/23/wKhkFmafWTeAGWGDAADOwy79p641783.jpg)
![生成式人工智能专利态势报告_第4页](http://file4.renrendoc.com/view3/M02/2B/23/wKhkFmafWTeAGWGDAADOwy79p641784.jpg)
![生成式人工智能专利态势报告_第5页](http://file4.renrendoc.com/view3/M02/2B/23/wKhkFmafWTeAGWGDAADOwy79p641785.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Contents
Acknowledgments5
Keyfindingsandinsights7
Introduction13
GenerativeAI–newsystemswithalonghistory13
Motivationofthisreport16
1GenerativeAI:Themainconcepts19
Backgroundandhistoricalorigins19
Deeplearning20
Discriminativeversusgenerativetasks20
WhatGenAImodelsexist?22
WhatareGenAImodes?23
2GlobalpatentingandresearchinGenAI33
Globaldevelopment33
Toppatentowners35
Keylocationsofinventors40
Keyfilingjurisdictions43
3PatenttrendsinGenAImodels45
Globaldevelopment45
Toppatentowners46
Keylocationsofinventors49
4PatenttrendsinGenAImodes51
Globaldevelopment51
Toppatentowners52
Keylocationsofinventors55
ConnectionbetweenGenAImodelsandGenAImodes55
5PatenttrendsinGenAIapplications57
Globaltrends57
Toppatentowners59
Keylocationsofinventors62
Connectionbetweencoremodelsandapplications63
Connectionbetweenmodesandapplications65
3
Furtherconsiderations67
ConcernsabouttheuseofGenAI67
LimitationsandfutureofpatentanalysisinrelationtoGenAI69
Appendices71
A.1Methodologyforpatentanalysis71
A.2Patentindicators73
A.3Interdependencebetweenmodels,modesandapplications74
A.4Patentsearches77
A.5Prompts82
A.6ScientificpublicationquerywithTheLens86
A.7Miningsoftwareanddatasetmentionsinthenon-patent
literaturecorpus86
A.8Descriptions/examplepatentsforGenAIapplications87
References105
4
Acknowledgments
ThisPatentLandscapeReportonGenerativeArtificialIntelligencewaspreparedunderthe
stewardshipofMarcoAlemán(AssistantDirectorGeneral,IPandInnovationEcosystems
Sector)andunderthedirectionofAlejandroRocaCampaña(SeniorDirector,IPforInnovators
Department)andAndrewCzajkowski(Director,TechnologyandInnovationSupportDivision),
andwasledbyChristopherHarrison(PatentAnalyticsManager,IPAnalyticsSection,TechnologyandInnovationSupportDivision)withthegenerousfinancialsupportbyFunds-In-TrustJapan
IndustrialPropertyGlobalprovidedbytheJapanPatentOffice.
ThereportwaspreparedbyaprojectteamledbyChristopherHarrisonandLakshmiSupriya
(PatentAnalyticsOfficer,IPAnalyticsSection,TechnologyandInnovationSupportDivision)
thatincludedKaiGramke,JochenSpuck,KlausJankandMichaelFreunek(allfromEconSight),PatriceLopez(science-miner)aswellasHongKan(PatentAnalyticsOfficer,IPAnalyticsSection,TechnologyandInnovationSupportDivision),AleksandrBelianovandCraigDsouza(former
YoungExperts,TechnologyandInnovationSupportDivision).
OurthanksalsogotoUlrikeTill(Director,IPandFrontierTechnologiesDivision)forreviewingthereportandprovidingvaluableinput.Finally,ourgratitudetotheWIPOeditorialanddesignteamledbyCharlotteBeauchamp(Head,PublicationsandDesignSection).
email:
ip.analytics@
5
Keyfindingsandinsights
ThereleaseofOpenAI’sChatGPTchatbotinNovember2022hasgreatlyincreasedpublic
enthusiasmforgenerativeAI(GenAI).Ithasbeendescribedbymany,includingNvidiaCEOJen-HsunHuang,asan“iPhonemoment”forGenAI.ThisisbecausetheOpenAIplatformhasmadeiteasierforalluserstoaccessadvancedGenAIprograms,particularlylargelanguagemodels(LLMs).Thesemodelshavereachednewlevelsofperformance,demonstratingthepotential
forvariousreal-worldapplications,triggeringawaveofresearchanddevelopment,andlargecorporateinvestmentsinGenAI.
ThisWIPOPatentLandscapeReportprovidesobservationsonpatentingactivityandscientificpublicationsinthefieldofGenAIandbuildsonthe2019WIPOTechnologyTrendspublicationonArtificialIntelligence.Itaimstoshedlightonthecurrenttechnologydevelopment,itschangingdynamicsandtheapplicationsinwhichGenAItechnologiesareexpectedtobeused.Italso
identifieskeyresearchcountries,companiesandorganizations.
significantlysince2017
GenAIpatentfamiliesandscientificpublicationshaveincreased
TheriseofGenAIoverthepastfewyearshasbeendrivenprimarilybythreefactors:more
powerfulcomputers,theavailabilityoflargedatasetsasasourceoftrainingdata,andimprovedAI/machinelearningalgorithms.DevelopmentssuchasthetransformerarchitectureinLLMs
havesignificantlyadvancedGenAI.Thishasmadeitpossibletodevelopcomplexapplicationsinmanydifferentfields.
ThetechnologicaladvancesinGenAIarereflectedbythesharpincreaseinpatentingactivity.Overthepast10years,thenumberofpatentfamiliesinGenAIhasgrownfromjustonly733in2014tomorethan14,000in2023.Sincetheintroductionofthetransformerin2017,thedeep
neuralnetworkarchitecturebehindtheLargeLanguageModelsthathavebecomesynonymouswithGenAI,thenumberofGenAIpatentshasincreasedbyover800%.Thenumberofscientificpublicationshasincreasedevenmoreoverthesameperiod,fromjust116in2014tomorethan34,000in2023.Over25%ofallGenAIpatentsandover45%ofallGenAIscientificpaperswerepublishedin2023alone.
7
8
GenAIpatentfamiliesGenAIscientificpublications
2014l 2015l 20162017201820192020202120222023
15,00010,00050000500010,00015,00020,00025,00030,00035,000
WhicharethetoporganizationswiththemostpatentsinGenAI?
1.Tencent
2.PingAnInsuranceGroup
3.Baidu
4.ChineseAcademyofSciences
5.IBM
Tencent,PingAnInsuranceGroupandBaiduownthemostGenAIpatents.TencentplanstoaddGenAIcapabilitiestoitsproductssuchasWeChattoimprovetheuserexperience.Ping
AnfocusesonGenAImodelsforunderwritingandriskassessment.BaiduwasoneoftheearlyplayersinGenAIandrecentlyunveileditslatestLLM-basedAIchatbot,ERNIE4.0.TheChineseAcademyofSciences(fourth)istheonlyresearchorganizationinthetop10ranking.Alibaba(sixth)andBytedance(ninth)areotherChinesecompaniesinthetop10.
PatentLandscapeReport–GenerativeArtificialIntelligence
IBM(fifth),Alphabet/Google(eighth)andMicrosoft(10th)arethetopUScompaniesintermsofGenAIpatents.IBMhasdevelopedaGenAIplatform,watsonx,whichenablescompaniestodeployandcustomizeLLMswithafocusondatasecurityandcompliance.Alphabet/Google'sAIdivisionDeepMindrecentlyreleaseditslatestLLMmodel,Gemini,whichisgraduallybeingintegratedintoAlphabet/Google'sproductsandservices.MicrosoftisanotherkeyplayerinGenAIandaninvestorinOpenAI.OpenAIitselfhasonlyrecentlyfileditsfirstGenAIpatents.Roundingoutthetop10iselectronicsconglomerateSamsungElectronics(seventh)fromtheRepublicofKorea.
CorporateUniversity/researchorganization
9
(US)
IBMMicrosoft
(US)
PingAn
Alb)etiiyInsurance
Adobe(China)Group
(US)(China)
Sony
()H(CuiChina
Mobile
(China)
Baidu(China)BBKN(Es
(China)Ele(cssuir
(Jn)(China)ByteDance
(China)
AlibabaGroup(China)
Chinese
Academy
ofSciences
(China)
TencentHoldings (China)
WhichinstitutionspublishedthemostscientificpublicationsonGenAI?
TheChineseAcademyofSciencesisclearlyintheleadintermsofscientificpublicationswithmorethan1,100publicationssince2010.TsinghuaUniversityandStanfordUniversityfollowinsecondandthirdplacewithmorethan600publicationseach.Alphabet/Google(fourth)istheonlycompanyinthetop20(556scientificpublications).
However,whenmeasuringtheimpactofscientificpublicationsbythenumberofcitations,
companiesdominate.Alphabet/Googleistheleadinginstitutionbyawidemargin,andsevenothercompaniesarepresentinthetop20.ThecaseofOpenAIisalsonoteworthy.InourGenAIcorpusofscientificpublications,thecompanyhaspublishedonly48articles(325thinstitutionintermsofnumberofpublications),butthesepublicationshavereceivedatotalof11,816citationsfromotherscientificpublications(13thoverall).
WherearethemostGenAItechnologiesinvented?
1.China
2.UnitedStates
3.RepublicofKorea
4.Japan
5.India
6.UnitedKingdom
Keyfindingsandinsights
7.Germany
InventorsbasedinChinawereresponsibleformorethan38,000patentfamiliesbetween
2014and2023,basedontheinventoraddressespublishedonpatents.Since2017,Chinahaspublishedmorepatentsinthisfieldeachyearthanallothercountriescombined.
PatentLandscapeReport–GenerativeArtificialIntelligence
10
Witharound6,300patentfamiliesbetween2014and2023,theUSisthesecondmostimportantresearchlocationforGenAIpatenting.TheAsiancountriesRepublicofKorea,JapanandIndia
areotherkeyresearchlocationsforGenAI,allrankinginthetop5countriesworldwide(third,fourthandfifthrespectively).TheUnitedKingdomistheleadingEuropeanlocation(sixth
globally),with714patentspublishedinthesameperiod.However,Germanyisclosebehind(708patentfamilies)andhaspublishedmoreGenAIpatentsthantheUKinrecentyears.Thesetopinventorlocationsaccountforthemajority(94%)ofglobalpatentingactivityrelatedtoGenAI.
China
US
RepublicofKorea
Japan
India
UK
Germany
Restofworld
Canada
Israel
France
WhichGenAImodelhasthemostpatents?
Inrecentyears,anumberofGenAIprograms,ormodels,havebeendeveloped.AmongthemostimportantGenAImodelsare:
1.generativeadversarialnetworks(GANs)
2.variationalautoencoders(VAEs)
3.decoder-basedlargelanguagemodels(LLMs)
However,notallGenAIpatentscanbeassignedtothesethreespecificcoremodelsbasedonavailableinformationfrompatentabstracts,claimsortitles.
AmongtheseGenAImodels,mostpatentsbelongtoGANs.Between2014and2023,therewere9,700patentfamiliesofthismodeltype,with2,400patentfamiliespublishedin2023alone.
VAEsandLLMsarethesecondandthirdlargestmodelsintermsofpatents,witharound1,800and1,300newpatentfamiliesrespectivelybetween2014and2023.
Intermsofpatentgrowth,GANpatentsshowthestrongestincreaseoverthepastdecade.
However,thishassloweddownrecently.Incontrast,diffusionmodelsandLLMsshowmuch
highergrowthratesoverthelastthreeyears,withthenumberofpatentfamiliesfordiffusionmodelsincreasingfrom18in2020to441in2023andforLLMsincreasingfrom53in2020to881in2023.TheGenAIboomcausedbymodernchatbotssuchasChatGPThasclearlyincreased
researchinterestinLLMs.
WhatarethemaintypesofdatausedinGenAIpatents?
ThemainGenAIdatatypesinclude:
–Image
–Video
–Speech
–Sound
–Music
AmongthedifferentGenAImodes,orthetypeofdatainputandoutput,mostpatentsbelongtotheimage/videocategory.Image/videodataisparticularlyimportantforGANs.Patents
involvingtheprocessingoftextandspeech/sound/musicarekeydatatypesforLLMs.The
remainingmodes:3Dimagemodels,chemicalmolecules/genes/proteinsandcode/software
havefarfewerpatentssofar.AswithpatentsrelatedtoGenAIcoremodels,somepatents
cannotbeclearlyassignedtoaspecificdatatype.Inaddition,somepatentsareassignedto
morethanonemodebecausecertainGenAImodels,suchasmultimodallargelanguagemodels(MLLMs),overcomethelimitationofusingonlyonetypeofdatainputoroutput.
TopapplicationareasofGenAIpatents
ThekeyapplicationareasforGenAIpatentsinclude:
1.Software
2.Lifesciences
3.Documentmanagementandpublishing
4.Businesssolutions
5.Industryandmanufacturing
6.Transportation
7.Security
8.Telecommunications
GenAIisboundtohaveasignificantimpactonmanyindustriesasitfindsitswayintoproducts,servicesandprocesses,becomingatechnologicalenablerforcontentcreationandproductivityimprovement.Forexample,therearemanyGenAIpatentsinlifesciences(5,346patent
familiesbetween2014and2023)anddocumentmanagementandpublishing(4,976).OthernotableapplicationswithGenAIpatentsrangingfromaround2,000toaround5,000overthesameperiodarebusinesssolutions,industryandmanufacturing,transportation,securityandtelecommunications.
Inthelifesciencessector,GenAIcanexpeditedrugdevelopmentbyscreeningand
designingmoleculesfornewdrugformulationsandpersonalizedmedicine.Indocument
managementandpublishing,GenAIcanautomatetasks,savetimeandmoney,andcreatetailoredmarketingmaterials.Inbusinesssolutions,GenAIcanbeusedforcustomerservicechatbots,retailassistancesystems,andemployeeknowledgeretrieval.Inindustryand
manufacturing,GenAIenablesnewfeatureslikeproductdesignoptimizationanddigitaltwinprogramming.Intransportation,GenAIplaysacrucialroleinautonomousdrivingandpublictransportationoptimization.
However,manypatentfamilies(around29,900patentfamiliesbetween2014and2023)cannotbeassignedtoaspecificapplicationbasedonthepatentabstract,claimsortitle.Thesepatentsareinsteadincludedinthecategorysoftware/otherapplications.
Keyfindingsandinsights
11
12
PatentLandscapeReport–GenerativeArtificialIntelligence
Introduction
GenerativeAI–newsystemswithalonghistory
Artificialintelligencetechnologieshaveseenadramaticincreaseinpublicandmediaattentioninrecentyears.However,AIisnotanewfieldofresearch.USandUKscientists–including
theoreticalmathematicianAlanTuring–werealreadyworkingonmachinelearninginthe
1930sand1940s,althoughthetermAIdidnotbecomepopularuntilthe1950s(McCarthyetal.2006).1The1950sand1960ssawasurgeofinterestinmanyAIareasincludingnaturallanguageprocessing,machinelearningandrobotics.Somescientistsatthetimepredictedthatamachineasintelligentasahumanwouldexistwithinageneration(Minsky1967).Thesepredictions
provedtobeoverlyoptimistic.Progressstagnatedbecauseofthelimitationsofcomputingpowerandalgorithmicapproachesavailableatthetime.Asaresult,researchfundingdriedup,whichledtothefirst“AIwinter”inthe1970s.Inthefollowingdecades,periodsofhighAIresearchintensityalternatedwithperiodsofloweractivity.
Foralongtime,AIalgorithmsandsoftwareweredevelopedforspecificpurposes,basedon
clearrulesoflogicandparametersspecifiedbyprogrammers.Evennow,manyAIapplicationsrelyonrule-baseddecisions:ifthis,thenthat.Forexample,virtualassistants(Siri,Alexa,etc.)areessentiallycommand-and-controlsystems.Theyonlyunderstandalimitedlistofquestionsandrequestsandfailtoadapttonewsituations.Theycannotapplytheir“knowledge”tonewproblemsordealwithuncertainty.
AIinthe21stcentury
ThemodernAIboomstartedatthebeginningofthe21stcenturyandhasbeenonanupward
trajectoryeversince.Today,AIandmachinelearningisusedincountlessapplications,includingsearchengines,recommendationsystems,targetedadvertising,virtualassistants,autonomousvehicles,automaticlanguagetranslation,facialrecognitionandmanymore.TheriseofAIhasbeendrivenmainlybythefollowingfactors:
–Morepowerfulcomputers:In1965,GordonMooreobservedthatthenumberoftransistorsoncomputerchipsdoublesapproximatelyeverytwoyearsandpredictedthatthiswould
continueforanother10years(Moore1965).Hislawhasheldtrueformorethanhalfa
century.ThisexponentialgrowthtranslatedintomoreandmorepowerfulAIsystems,oftenwithAI-specificenhancements.
–Bigdata:Second,theavailabilityofdatahasincreasedsimilarlyexponentially.ThishasprovidedapowerfulsourceoftrainingdataforAIalgorithmsandhasmadeitpossibletotrainmodelswithbillionsofimagesorahundredbilliontokens2oftext.
–BetterAI/machinelearningalgorithms:NewmethodsthatallowAIsystemstobetterusedataandalgorithmstolearnthewayhumansdo,suchasdeeplearning,haveenabled
breakthroughsinareassuchasimagerecognitionornaturallanguageprocessing
(WIPO2019).
1Theterm“ArtificialIntelligence”hasbeenvastlyinfluencedbyJohnMcCarthyatDartmouth,whoco-organizedwithMarvinMinskytheDartmouthSummerResearchProjectonArtificialIntelligencein1956.
13
2Tokensarecommonsequencesofcharactersfoundinasetoftext.Tokenizationbreakstextintosmallerpartsforeasiermachineanalysis,helpingAImodelsunderstandhumanlanguage.
PatentLandscapeReport–GenerativeArtificialIntelligence
14
Learningwithexamplesratherthanrules
TheheartofmodernAIismachinelearning,whencomputersystemslearnwithoutbeing
specificallyprogrammedtodoso.ModernAImodelsarefedwithexamplesofinputdata
andthedesiredoutcome,allowingthemtobuildmodelsorprogramsthatcanbeappliedto
entirelynewdata.Machinelearningexcelsathandlingmassivedatasetsanduncoveringhiddenpatternswithinthem.
Apowerfulapproachwithinmachinelearningiscalleddeeplearning.Itleveragescomplex
structurescalledartificialneuralnetworks,looselymodeledafterthehumanbrain.These
networksidentifypatternswithindatasets.Themoredatatheyhaveaccessto,thebettertheylearnandperform.Informationflowsthroughnumerouslayersofinterconnectedneurons,
whereitisprocessedandevaluated.Eachlayerrefinestheinformation,connectingand
weightingitthroughnodes.Essentially,AIlearnsbycontinuouslyreassessingitsknowledge,
formingnewconnectionsandprioritizinginformationbasedonnewdataitencounters.
Thetermdeeplearningreferstothevastnumberoflayersthesenetworkscanutilize.Deep
learning-poweredAIhasachievedremarkableadvancements,especiallyinareaslikeimage
andspeechrecognition.However,itssuccesscomeswithadrawback.Whiletheaccuracyoftheresultsisimpressive,thedecision-makingprocessremainsunclear,eventoAIexperts.Thislackoftransparencyisacontrasttoolderrule-basedsystems.
ModerngenerativeAI(GenAI):thenextlevelofAI
GenerativeAI(GenAI)hasbeenanactiveareaofresearchforalongtime.JosephWeizenbaumdevelopedtheveryfirstchatbot,ELIZA,inthe1960s(Weizenbaum1966).However,GenAIasweknowittodaywasheraldedbytheadventofdeeplearningbasedonneuralnetworks.
Today,GenAIisoneofthemostpowerfulexamplesofmachinelearning.Comparedtoold
rule-basedAIapplicationsthatcouldonlyperformasingletask,modernGenAImodelsare
trainedondatafrommanydifferentareas,withoutanylimitationsintermsoftask.Because
theamountoftrainingdataissolarge–OpenAI’sGPT-3wastrainedonmorethan45terabytesofcompressedtextdata(Brownetal.2020)–themodelsappeartobecreativeinproducing
outputs.Forexample,traditionalchatbotsfollowscriptedresponsesandrelyonpre-definedrulestointeractwithusers,makingthemsuitableonlyforspecifictasks.Incontrast,modernGenAIchatbotssuchasChatGPTorGoogleGeminicangeneratehuman-liketext,allowingforconversationsthatcanadapttomanytopicswithoutbeingconfinedtoapredeterminedscript.Inaddition,thesemodernchatbotscanproducenotonlytext,butalsoimages,musicand
computercodebasedonthedatasetonwhichtheyweretrained.
ThereleaseofChatGPTin2022wasaniPhonemomentforGenAI
InNovember2022,OpenAIreleasedChatGPT(ChatGenerativePre-trainedTransformer)to
thepublic,whichgreatlyincreasedpublicenthusiasmforGenAI.MorethanonemillionpeoplesigneduptouseChatGPTinjustfivedays.A2023surveybyauditingandconsultingfirm
Deloittefoundthatnearly61%ofrespondentsinSwitzerlandwhoworkwithacomputeralreadyuseChatGPTorotherGenAIprogramsintheirdailywork(Deloitte2023).TheChatGPTreleasehasbeendescribedbymany,includingNvidiaCEOJen-HsunHuang,asan“iPhonemoment”forGenAI(VentureBeat2023).ThisispartlybecausetheplatformmadeiteasierforuserstoaccessadvancedGenAImodels,specificallydecoder-basedlargelanguagemodels.3Thesemodels
havedemonstratedthepotentialformanyreal-worldapplicationsandhavesparkedawaveofresearchanddevelopment.ManycompaniesareheavilyinvestinginGenAI,withthesenewermodelsreachinganewdimensionofcapabilities.
3SeenextchapterforanoverviewanddescriptionofthedifferentmodernGenAImodels.
AbrieftimelineofGenAI15
1957•FrankRosenblattintroducestheperceptron,thefundamentalbuildingblockofneuralnetworks
(Rosenblatt1957)
1972
•
Amari-HopfieldNetworksmakerecurrentneuralnetworksabletolearn,asaformofassociativememory(Amari1972,Hopfield1982)
1997
•
LongShortTermMemory(LSTM)recurrentneuralnetworksarepublished,whichwillbecomeoneofthemostsuccessfuldeeplearningarchitecturesinthe2010s(HochreiterandSchmidhuber1997)
1990
•
MarkovnetworksandotherstatisticallanguagemodelsledtoeffectiveAIcommercialsystems,suchasthefirstversionsofGoogleTranslate
2013
•
VariationalAutoencoders(VAEs),anAuto-encoderapproachabletogeneratenewrealisticimagesamplesfrominputimages(KingmaandWelling2013)
2014
•
GenerativeAdversarialNetworksaredescribed,whichwillleadtovariousgenerativeapplicationsaroundphotorealisticimages
2016
•
WaveNetbyDeepMind,anoveldeepneuralnetworkapproachforrealistichumanspeech(vandenOordetal.2016)
2017
•
AteamfromGoogleResearchintroducesthetransformer,thedeepneuralnetworkarchitecturebehindtheLargeLanguageModels(Vaswanietal.2017).
2018
•
GPT,thefirstgenerativelanguagemodelofOpenAI,atransformerof120millionparameters(OpenAI2018)
2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省邵阳市武冈三中学2025届中考生物全真模拟试题含解析2
- 四川省眉山市仁寿县2025届中考考前最后一卷生物试卷含解析
- 2025届福建省泉州中考生物猜题卷含解析
- 店铺销售承包合同范本
- 企业融资租赁服务协议书
- 公司个人房屋租赁合同年
- 种羊销售合同范本
- 酒店连锁经营投资协议
- 2024年钢铁产能优化改造项目合作合同
- 车辆协议书年
- 2024-2025学年人教新版高二(上)英语寒假作业(五)
- 冰心《童年的春节》
- GB/T 7324-2010通用锂基润滑脂
- 郑州小吃详细地点
- 上海高考英语词汇手册
- 2021年江苏省淮安市淮阴中学高一政治下学期期末试题含解析
- 公共政策工具-课件
- 石油化工、煤化工、天然气化工优劣势分析
- 客户的分级管理培训(共60页).ppt
- 广东省义务教育阶段学生转学转出申请表(样本)
- 如何成为一个优秀的生产经理
评论
0/150
提交评论