湖南省怀化市名校2024届中考考前最后一卷数学试卷含解析_第1页
湖南省怀化市名校2024届中考考前最后一卷数学试卷含解析_第2页
湖南省怀化市名校2024届中考考前最后一卷数学试卷含解析_第3页
湖南省怀化市名校2024届中考考前最后一卷数学试卷含解析_第4页
湖南省怀化市名校2024届中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省怀化市名校2024届中考考前最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:成绩(米)人数则这名运动员成绩的中位数、众数分别是()A. B. C., D.2.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D.三角形的三个内角中最多有一个钝角3.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米4.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A. B. C. D.5.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A. B. C. D.6.2014年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负责校园足球工作.2018年2月1日,教育部第三场新春系列发布会上,王登峰司长总结前三年的工作时提到:校园足球场地,目前全国校园里面有5万多块,到2020年要达到85000块.其中85000用科学记数法可表示为()A.0.85105 B.8.5104 C.8510-3 D.8.510-47.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里 B.45海里 C.20海里 D.30海里8.下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.9.如图由四个相同的小立方体组成的立体图像,它的主视图是().A. B. C. D.10.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=________12.已知一个正六边形的边心距为,则它的半径为______.13.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是_____.14.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144° B.84° C.74° D.54°15.a(a+b)﹣b(a+b)=_____.16.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶点都在格点上,回答下列问题:可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:______;画出绕点B逆时针旋转的图形;在中,点C所形成的路径的长度为______.18.(8分)AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=2,求CE的长.19.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.20.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.21.(8分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.22.(10分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)23.(12分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.24.定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,,试作出分别以,为两根且二次项系数为6的一个一元二次方程.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.2、D【解析】

A.两个数的平方相等,这两个数不一定相等,有正负之分即可判断B.同号相乘为正,异号相乘为负,即可判断C.“购买1张彩票就中奖”是随机事件即可判断D.根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2=b2,则a=±b,A是假命题;数a,b满足a<0,b<0,则ab>0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键3、C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.4、A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四边形DEFG为矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴,即,解得:EH=x,所以y=•x•x=x2,∵x、y之间是二次函数,所以所选答案C错误,答案D错误,∵a=>0,开口向上;(2)当2≤x≤6时,如图,此时y=×2×2=2,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴开口向下,所以答案A正确,答案B错误,故选A.点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.5、A【解析】

观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6、B【解析】

根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,等于这个数的整数位数减1.【详解】解:85000用科学记数法可表示为8.5×104,

故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、D【解析】

根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.8、A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.9、D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选D.10、B【解析】

把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.【详解】解:∵若,是一元二次方程的两个不同实数根,∴,∴∴故选B.【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.详解:设D(a,),

∵点D为矩形OABC的AB边的中点,

∴B(2a,),

∴E(2a,),

∵△BDE的面积为1,

∴•a•(-)=1,解得k=1.

故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.12、2【解析】试题分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.解:如图所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案为2.点睛:本题主要考查正多边形和圆的关系.解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.13、①②③【解析】

由公交车在7至12分钟时间内行驶的路程可求解其行驶速度,再由求解的速度可知公交车行驶的时间,进而可知小刚上公交车的时间;由上公交车到他到达学校共用10分钟以及公交车行驶时间可知小刚跑步时间,进而判断其是否迟到,再由图可知其跑步距离,可求解小刚下公交车后跑向学校的速度.【详解】解:公交车7至12分钟时间内行驶的路程为3500-1200-300=2000m,则其速度为2000÷5=400米/分钟,故①正确;由图可知,7分钟时,公交车行驶的距离为1200-400=800m,则公交车行驶的时间为800÷400=2min,则小刚从家出发7-2=5分钟时乘上公交车,故②正确;公交车一共行驶了2800÷400=7分钟,则小刚从下公交车到学校一共花了10-7=3分钟<4分钟,故④错误,再由图可知小明跑步时间为300÷3=100米/分钟,故③正确.故正确的序号是:①②③.【点睛】本题考查了一次函数的应用.14、B【解析】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.15、(a+b)(a﹣b).【解析】

先确定公因式为(a+b),然后提取公因式后整理即可.【详解】a(a+b)﹣b(a+b)=(a+b)(a﹣b).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.16、27π【解析】试题分析:设扇形的半径为r.则,解得r=9,∴扇形的面积==27π.故答案为27π.考点:扇形面积的计算.三、解答题(共8题,共72分)17、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3).【解析】

(1)△ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到△DEF;按照旋转中心、旋转角度以及旋转方向,即可得到△ABC绕点B逆时针旋转的图形△;依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可.【详解】解:(1)答案不唯一例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折.(2)分别将点C、A绕点B逆时针旋转得到点、,如图所示,△即为所求;(3)点C所形成的路径的长为:.故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)π..【点睛】本题考查坐标与图形变化旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.18、(2)见解析;(2)2+.【解析】

(2)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;

(2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.【详解】(2)证明:连接OC,∵AB为⊙O直径,∴∠ACB=90°,∵CD为⊙O切线∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)连接AE,过点B作BF⊥CE于点F,∵E是AB中点,∴,∴AE=BE=2.∵AB为⊙O直径,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.【点睛】本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.19、(1)见解析(2)7.5【解析】

(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt△ADC中,求得DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)连接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴BC=【点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.20、(1)(2)证明见解析;(3)1.【解析】

(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;

(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;

(3)易证△PAC∽△PCB,由相似三角形的性质可得到,又因为tan∠ABC=,所以可得=,进而可得到=,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.【详解】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合题意,舍去).∴PC=4k=4×6=1.【点睛】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.21、(1)方案1;B(5,0);;(2)3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x=3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,∴抛物线的解析式为:;(2)由题意:把代入,解得:=3.2,∴水面上涨的高度为3.2m.方案2:(1)点B的坐标为(10,0).设抛物线的解析式为:.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,∴抛物线的解析式为:;(2)由题意:把代入解得:=3.2,∴水面上涨的高度为3.2m.方案3:(1)点B的坐标为(5,),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:,把点B的坐标(5,),代入解析式可得:,∴抛物线的解析式为:;(2)由题意:把代入解得:=,∴水面上涨的高度为3.2m.22、2.1.【解析】

据题意得出tanB=,即可得出tanA,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF=1x的长.【详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.【点睛】点评:本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.23、(1)1;(1)≤m<.【解析】

(1)在Rt△ABP中利用勾股定理即可解决问题;(1)分两种情形求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论