云南省昆明市十县2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第1页
云南省昆明市十县2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第2页
云南省昆明市十县2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第3页
云南省昆明市十县2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第4页
云南省昆明市十县2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列函数中,变量是的反比例函数是()A. B. C. D.2.已知,则为()A. B. C. D.3.在△ABC中,∠C=90°,sinA=,则tanB等于()A. B.C. D.4.用配方法解一元二次方程时,此方程可变形为()A. B. C. D.5.下列图案中,是中心对称图形的是()A. B.

C. D.6.已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限7.方程x2+4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根8.如图,在正方形ABCD中,AB=4,AC与相交于点O,N是AO的中点,点M在BC边上,P是OD的中点,过点P作PM⊥BC于点M,交于点N′,则PN-MN′的值为()A. B. C. D.9.如图,矩形的中心为直角坐标系的原点,各边分别与坐标轴平行,其中一边交轴于点,交反比例函数图像于点,且点是的中点,已知图中阴影部分的面积为,则该反比例函数的表达式是()A. B. C. D.10.已知锐角α,且sinα=cos38°,则α=()A.38° B.62° C.52° D.72°11.不等式组的解集是()A. B. C. D.12.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为▲.14.如图,在中,,,,、分别是边、上的两个动点,且,是的中点,连接,,则的最小值为__________.15.如图,在矩形中,是上的点,点在上,要使与相似,需添加的一个条件是_______(填一个即可).16.现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根,且关于的分式方程有整数解的概率为.17.如图,的中线、交于点,点在边上,,那么的值是__________.18.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1、弧K1K2、弧K2K3、弧K3K4、弧K4K5、弧K5K6、…的圆心依次按点A、B、C、D、E、F循环,其弧长分别为l1、l2、l3、l4、l5、l6、….当AB=1时,l3=________,l2019=_________.三、解答题(共78分)19.(8分)平面直角坐标系中有两点、,我们定义、两点间的“值”直角距离为,且满足,其中.小静和佳佳在解决问题:(求点与点的“1值”直角距离)时,采用了两种不同的方法:(方法一):;(方法二):如图1,过点作轴于点,过点作直线与轴交于点,则请你参照以上两种方法,解决下列问题:(1)已知点,点,则、两点间的“2值”直角距离.(2)函数的图像如图2所示,点为其图像上一动点,满足两点间的“值”直角距离,且符合条件的点有且仅有一个,求出符合条件的“值”和点坐标.(3)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走,因此,两地之间修建垂直和平行的街道常常转化为两点间的“值”直角距离,地位于地的正东方向上,地在点东北方向上且相距,以为圆心修建了一个半径为的圆形湿地公园,现在要在公园和地之间修建观光步道.步道只能东西或者南北走向,并且东西方向每千米成本是20万元,南北方向每千米的成本是10万元,问:修建这一规光步道至少要多少万元?20.(8分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AC=8,CE=4,求弧BD的长.(结果保留π)21.(8分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.22.(10分)某校九年级学生参加了中考体育考试.为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)m的值为;(2)该班学生中考体育成绩的中位数落在组;(在A、B、C、D、E中选出正确答案填在横线上)(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.23.(10分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.(1)甲运动后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?24.(10分)(1)计算:cos60°﹣tan30°+tan60°﹣2sin245°;(2)解方程:2(x﹣3)2=x(x﹣3).25.(12分)近年来,“在初中数学教学候总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对使用计算器影响计算能力的发展看法人数统计表看法

没有影响

影响不大

影响很大

学生人数(人)

40

60

m

(1)求n的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数.26.如图,双曲线(>0)与直线交于点A(2,4)和B(a,2),连接OA和OB.(1)求双曲线和直线关系式;(2)观察图像直接写出:当>时,的取值范围;(3)求△AOB的面积.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据反比例函数的一般形式即可判断.【详解】A.不符合反比例函数的一般形式的形式,选项错误;B.符合反比例函数的一般形式的形式,选项正确;C.不符合反比例函数的一般形式的形式,选项错误;D.不符合反比例函数的一般形式的形式,选项错误.故选B.【点睛】本题考查了反比例函数的定义,熟练掌握反比例函数的一般形式是解题的关键.2、D【分析】由题意先根据已知条件得出a=b,再代入要求的式子进行计算即可得出答案.【详解】解:∵,∴a=b,∴==.故选:D.【点睛】本题考查比例的性质和代数式求值,熟练掌握比例的性质是解题的关键.3、B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B4、D【解析】试题解析:故选D.5、D【分析】根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.6、B【详解】解:将点(m,3m)代入反比例函数得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.7、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【详解】解:∵△=b2﹣4ac=16﹣16=0∴方程有两个相等的实数根.故选:B.【点睛】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8、A【分析】根据正方形的性质可得点O为AC的中点,根据三角形中位线的性质可求出PN的长,由PM⊥BC可得PM//CD,根据点P为OD中点可得点N′为OC中点,即可得出AC=4CN′,根据MN′//AB可得△CMN′∽△CBA,根据相似三角形的性质可求出MN′的长,进而可求出PN-MN′的长.【详解】∵四边形ABCD是正方形,AB=4,∴OA=OC,AD=AB=4,∵N是AO的中点,P是OD的中点,∴PN是△AOD的中位线,∴PN=AD=2,∵PM⊥BC,∴PM//CD//AB,∴点N′为OC的中点,∴AC=4CN′,∵PM//AB,∴△CMN′∽△CBA,∴,∴MN′=1,∴PN-MN′=2-1=1,故选:A.【点睛】本题考查正方形的性质、三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握三角形中位线的性质及相似三角形的判定定理是解题关键.9、B【分析】根据反比例函数的对称性以及已知条件,可得矩形的面积是8,设,则,根据,可得,再根据反比例函数系数的几何意义即可求出该反比例函数的表达式.【详解】∵矩形的中心为直角坐标系的原点O,反比例函数的图象是关于原点对称的中心对称图形,且图中阴影部分的面积为8,

∴矩形的面积是8,

设,则,

∵点P是AC的中点,

∴,

设反比例函数的解析式为,

∵反比例函数图象于点P,

∴,

∴反比例函数的解析式为.

故选:B.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数系数的几何意义,得出矩形的面积是8是解题的关键.10、C【分析】根据一个角的正弦值等于它的余角的余弦值求解即可.【详解】∵sinα=cos38°,

∴α=90°-38°=52°.

故选C.【点睛】本题考查了锐角三角函数的性质,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值.11、D【分析】根据不等式的性质解不等式组即可.【详解】解:化简可得:因此可得故选D.【点睛】本题主要考查不等式组的解,这是中考的必考点,应当熟练掌握.12、B【分析】画树状图得出所有等可能结果,从找找到符合条件得结果数,在根据概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的有6种结果,所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率为.故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每题4分,共24分)13、1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=1.故答案为114、【分析】先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=,再连接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵,∴又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴∴PA+PB=PA+PF,∵PA+PF≥AF,AF=∴PA+PB≥.∴PA+PB的最小值为,故答案为.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.15、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一个即可)【分析】根据相似三角形的判定解答即可.【详解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案为:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【点睛】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答.16、【详解】首先根据一元二次方程有实数解可得:4-4(a-2)≥0可得:a≤3,则符合条件的a有0,1,2,3四个;解分式方程可得:x=,∵x≠2,则a≠1,a≠2,综上所述,则满足条件的a为0和3,则P=.考点:(1)、概率;(2)、分式方程的解.17、【分析】根据三角形的重心和平行线分线段成比例解答即可.【详解】∵△ABC的中线AD、CE交于点G,

∴G是△ABC的重心,

∴,

∵GF∥BC,

∴,

∵DC=BC,

∴,

故答案为:.【点睛】此题考查三角形重心问题以及平行线分线段成比例,解题关键是根据三角形的重心得出比例关系.18、π673π【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2019的长.【详解】解:根据题意得:l1=,l2=,l3=,则l2019=.故答案为:π;673π.【点睛】本题考查的是弧长的计算,先用公式计算,找出规律,则可求出ln的长.三、解答题(共78分)19、(1)10(2),(3)【分析】(1)根据直角距离的公式,直接代入求解即可;(2)设点C的坐标为,代入直角距离公式可得根据根的判别式求出k的值,即可求出点C的坐标;(3)如图,⊙C与线段AC交于点D,过点D作与AB交于点E,先证明△ADE是等腰直角三角形,从而得出,再根据直角距离的定义,即可求出出最低的成本.【详解】(1)∵,点,点∴;(2)设点C的坐标为∵∴∵∴∴∵符合条件的点有且仅有一个,且∴解得∴解得∴故,;(3)如图,⊙C与线段AC交于点D,过点D作与AB交于点E由题意得∴∵∴△ADE是等腰直角三角形∴∵步道只能东西或者南北走向,并且东西方向每千米成本是20万元,南北方向每千米的成本是10万元∴步道的最短距离为A和D的直角距离,即最低总成本(万元)故修建这一规光步道至少要万元.【点睛】本题考查了直角距离的问题,掌握直角距离的定义以及公式、根的判别式、解一元二次方程的方法是解题的关键.20、(1)见解析;(2)【分析】(1)连接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,据此可得∠DAE=∠ADO,继而知OD∥AE,根据AE⊥EF即可得证;(2)作OG⊥AE,知AG=CG=AC=4,证四边形ODEG是矩形,得出OA=OB=OD=CG+CE=4,再证△ADE∽△ABD得AD2=192,据此得出BD的长及∠BAD的度数,利用弧长公式可得答案.【详解】(1)证明:连接OD,如图1所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)解:作OG⊥AE于点G,连接BD,如图2所示:则AG=CG=AC=4,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=4+4=8,∠DOG=90°,∴AB=2OA=16,∵AC=8,CE=4,∴AE=AC+CE=12,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴,即,∴,在Rt△ABD中,,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则弧BD的长度为=.【点睛】本题考查切线的判定与性质,解题的关键是掌握切线的判定与性质、矩形的判定与性质、垂径定理、弧长公式等知识点.21、(1)姐姐用时秒,妹妹用时秒,所以不能同时到,姐姐先到;(2)姐姐后退米或妹妹前进3米【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:即:∴a=50k,b=47k则再次比赛,姐姐的时间为:=秒妹妹的时间为:秒∵,∴<,即姐姐用时短,姐姐先到达终点(2)情况一:姐姐退后x米,两人同时到达终点则:=,解得:x=情况二:妹妹向前y米,两人同时到达终点则:=,解得:y=3综上得:姐姐退后米或妹妹前进3米,两人同时到达终点【点睛】本题考查行程问题,解题关键是引入辅助元k,用于表示姐姐和妹妹的速度关系.22、(1)18;(2)D组;(3)图表见解析,【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);故答案为:18;(2)∵全班学生人数有50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段,∴落在D段故答案为:D;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)∵共有6种等情况数,∴恰好选到一男一女的概率是==.【点睛】此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键.23、(1)28cm;(2)3s;(3)7s【分析】(1)将t=4代入公式计算即可;(2)第一次相遇即是共走半圆的长度,据此列方程,求解即可;(3)第二次相遇应是走了三个半圆的长度,得到,解方程即可得到答案.【详解】解:(1)当t=4s时,cm.答:甲运动4s后的路程是.(2)由图可知,甲乙第一次相遇时走过的路程为半圆,甲走过的路程为,乙走过的路程为,则.解得或(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s.(3)由图可知,甲乙第二次相遇时走过的路程为三个半圆,则解得或(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s.【点睛】此题考查一元二次方程的实际应用,正确理解题意是解题的关键.24、(1);(2)x1=3,x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论