泰州市重点中学2022-2023学年数学九上期末监测试题含解析_第1页
泰州市重点中学2022-2023学年数学九上期末监测试题含解析_第2页
泰州市重点中学2022-2023学年数学九上期末监测试题含解析_第3页
泰州市重点中学2022-2023学年数学九上期末监测试题含解析_第4页
泰州市重点中学2022-2023学年数学九上期末监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,中,点,分别是边,上的点,,点是边上的一点,连接交线段于点,且,,,则S四边形BCED()A. B. C. D.2.如图,点A、B、C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,∠ACD的度数为()A.10° B.15° C.20° D.30°3.下列美丽的壮锦图案是中心对称图形的是()A. B. C. D.4.如图,在平面直角坐标系中,与轴相切,直线被截得的弦长为,若点的坐标为,则的值为()A. B. C. D.5.下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个6.如图,已知,,,的长为()A.4 B.6 C.8 D.107.当x=1时,代数式2ax2+bx的值为5,当x=2时,代数式ax2+bx﹣3的值为()A.﹣ B.2 C.7 D.178.已知是方程x2﹣2x+c=0的一个根,则c的值是()A.﹣3 B.3 C. D.29.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3,则⊙O的半径为()A.10 B.8 C.7 D.510.如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于(

)A. B. C. D.二、填空题(每小题3分,共24分)11.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm12.如图,中,A,B两个顶点在轴的上方,点C的坐标是(−1,0).以点C为位似中心,在轴的下方作的位似图形,并把的边长放大到原来的2倍,记所得的像是.设点A的横坐标是,则点A对应的点的横坐标是_________.13.如图,在中,,于,已知,则__________.14.数据2,3,5,5,4的众数是____.15.如图,在Rt△ABC中,∠BCA=90º,∠BAC=30º,BC=4,将Rt△ABC绕A点顺时针旋转90º得到Rt△ADE,则BC扫过的阴影面积为___.16.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为__.17.如图,点是矩形中边上一点,将沿折叠为,点落在边上,若,,则________.18.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是_____.三、解答题(共66分)19.(10分)已知x2﹣8x+16﹣m2=0(m≠0)是关于x的一元二次方程(1)证明:此方程总有两个不相等的实数根;(2)若等腰△ABC的一边长a=6,另两边长b、c是该方程的两个实数根,求△ABC的面积.20.(6分)如图,在矩形ABCD中,已知AD>AB.在边AD上取点E,连结CE.过点E作EF⊥CE,与边AB的延长线交于点F.(1)求证:△AEF∽△DCE.(2)若AB=3,AE=4,DE=6,求线段BF的长.21.(6分)如图,在平面直角坐标系中,顶点为(11,﹣)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,8).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)连接AC,在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形,若存在,请直接写出点P的坐标,若不存在,请说明理由.22.(8分)如图,在四边形ABCD中,AD∥BC,AD=2BC,E为AD的中点,连接BD,BE,∠ABD=90°(1)求证:四边形BCDE为菱形.(2)连接AC,若AC⊥BE,BC=2,求BD的长.23.(8分)两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)求得样本容量为,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A组发表提议的代表中恰有1为女士,E组发表提议的代表中只有2位男士,现从A组与E组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.24.(8分)已知是上一点,.(Ⅰ)如图①,过点作的切线,与的延长线交于点,求的大小及的长;(Ⅱ)如图②,为上一点,延长线与交于点,若,求的大小及的长.25.(10分)央视举办的《主持人大赛》受到广泛的关注.某中学学生会就《主持人大赛》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作、、、.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:(1)本次被调查对象共有人;扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为.(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两个女生和两个男生,从选“不太喜欢”的人中挑选两个学生了解不太喜欢的原因,请用列举法(画树状图或列表),求所选取的这两名学生恰好是一男一女的概率.26.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?

参考答案一、选择题(每小题3分,共30分)1、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形对应成比例可得,得到HC=5,再根据相似三角形的面积比等于相似比的平方可得,S△ABC=40.5,再减去△ADE的面积即可得到四边形BCED的面积.【详解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四边形BCED=S△ABC-S△ADE=40.5-18=22.5故答案选:B.【点睛】本题考查相似三角形的性质和判定.2、C【分析】根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据外角求得∠ACD的度数.【详解】解:∵∠A=50°,

∴∠BOC=2∠A=100°,

∵∠B=30°,∠BOC=∠B+∠BDC,

∴∠BDC=∠BOC-∠B=100°-30°=70°,∴∠ACD=70°50°=20°;故选:C.【点睛】本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.3、A【解析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4、B【分析】过点P作PH⊥AB于H,PD⊥x轴于D,交直线y=x于E,连结PA,根据切线的性质得PC⊥y轴,则P点的横坐标为4,所以E点坐标为(4,4),易得△EOD和△PEH都是等腰直角三角形,根据垂径定理由PH⊥AB得AH=,根据勾股定理可得PH=2,于是根据等腰直角三角形的性质得PE=,则PD=,然后利用第一象限点的坐标特征写出P点坐标.【详解】解:过点P作PH⊥AB于H,PD⊥x轴于D,交直线y=x于E,连结PA,

∵⊙P与y轴相切于点C,

∴PC⊥y轴,

∴P点的横坐标为4,

∴E点坐标为(4,4),

∴△EOD和△PEH都是等腰直角三角形,

∵PH⊥AB,

∴AH=,

在△PAH中,PH=,

∴PE=,

∴PD=,

∴P点坐标为(4,).故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了垂径定理.5、B【分析】根据中心对称图形和轴对称图形的概念即可得出答案.【详解】根据中心对称图形和轴对称图形的概念,可以判定既是中心对称图形又是轴对称图形的有第3第4个共2个.故选B.考点:1.中心对称图形;2.轴对称图形.6、D【分析】根据平行线分线段成比例得到,即,可计算出.【详解】解:,即,解得.故选D【点睛】本题主要考查平行线段分线段成比例定理,熟练掌握并灵活运用定理是解题的关系.7、C【解析】直接把x=1代入进而得出2a+b=5,再把x=2代入ax2+bx﹣3,即可求出答案.【详解】∵当x=1时,代数式2ax2+bx的值为5,∴2a+b=5,∴当x=2时,代数式ax2+bx﹣3=4a+2b﹣3=2(2a+b)﹣3=2×5﹣3=1.故选:C.【点睛】本题主要考查求代数式的值,整体思想方法的应用,是解题的关键.8、B【分析】把x=代入方程得到关于c的方程,然后解方程即可.【详解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故选:B.【点睛】本题考查了一元二次方程根的性质,解答关键是将方程的根代入原方程求出字母系数.9、D【分析】根据垂径定理可得出AE的值,再根据勾股定理即可求出答案.【详解】解:∵OE⊥AB,∴AE=BE=4,∴.故选:D.【点睛】本题考查的知识点是垂径定理,根据垂径定理得出AE的值是解此题的关键.10、C【解析】试题解析:设正方形网格每个小正方形边长为1,则BC边上的高为2,则,.故本题应选C.二、填空题(每小题3分,共24分)11、12π【分析】根据弧长公式代入可得结论.【详解】解:根据题意,扇形的弧长为,故答案为:12π.【点睛】本题主要考查弧长的计算,解决本题的关键是要熟练掌握弧长公式.12、【分析】△A′B′C的边长是△ABC的边长的2倍,过A点和A′点作x轴的垂线,垂足分别是D和E,因为点A的横坐标是a,则DC=-1-a.可求EC=-2-2a,则OE=CE-CO=-2-2a-1=-3-2a【详解】解:如图,过A点和A′点作x轴的垂线,垂足分别是D和E,∵点A的横坐标是a,点C的坐标是(-1,0).

∴DC=-1-a,OC=1

又∵△A′B′C的边长是△ABC的边长的2倍,CE=2CD=-2-2a,OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a【点睛】本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.13、【分析】根据,可设AC=4x,BC=5x,利用勾股定理可得AB=3x,则.【详解】在Rt△ABC中,∵∴设AC=4x,BC=5x∴∴故答案为:.【点睛】本题考查求正切值,熟练掌握三角函数的定义是解题的关键.14、1【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵1是这组数据中出现次数最多的数据,∴这组数据的众数为1.故答案为:1.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.15、4π【分析】先利用含30度的直角三角形三边的关系得到AB=2BC=8,AC=BC=,再根据旋转的性质得到∠CAE=∠BAD=90°,然后根据扇形的面积公式,利用BC扫过的阴影面积=S扇形BAD-S△CAE进行计算.【详解】解:∵∠BCA=90°,∠BAC=30°,∴AB=2BC=8,AC=BC=4,∵Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,∴∠CAE=∠BAD=90°,∴BC扫过的阴影面积=S扇形BAD-S△CAE=.故答案为:4π.【点睛】本题考查了扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=或S扇形=(其中l为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了旋转的性质.16、1.【分析】根据题意,写出已知条件并画出图形,然后根据勾股定理即可求出AB,再根据圆周角为直角所对的弦是直径即可得出结论.【详解】如图,已知:AC=8,BC=6,由勾股定理得:AB==1,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是1;故答案为:1.【点睛】此题考查的是求三角形的外接圆的直径,掌握圆周角为直角所对的弦是直径是解决此题的关键.17、5【分析】由矩形的性质可得AB=CD=8,AD=BC=10,∠A=∠D=90°,由折叠的性质可求BF=BC=10,EF=CE,由勾股定理可求AF的长,CE的长.【详解】解:∵四边形ABCD是矩形∴AB=CD=8,AD=BC=10,∠A=∠D=90°,∵将△BCE沿BE折叠为△BFE,在Rt△ABF中,AF==6∴DF=AD-AF=4在Rt△DEF中,DF2+DE2=EF2=CE2,∴16+(8-CE)2=CE2,∴CE=5故答案为:5【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,灵活运用这些性质进行推理是本题的关键.18、﹣1.5或2【解析】将二次函数配方成顶点式,分m<-1、m>2和-1≤m≤2三种情况,根据y的最小值为-2,结合二次函数的性质求解可得.【详解】y=x2-2mx=(x-m)2-m2,

①若m<-1,当x=-1时,y=1+2m=-2,

解得:m=-32=-1.5;

②若m>2,当x=2时,y=4-4m=-2,

解得:m=32<2(舍);

③若-1≤m≤2,当x=m时,y=-m2=-2,

解得:m=2或m=-2<-1(舍),

∴m的值为-1.5或2,

故答案为:﹣1.5或【点睛】本题考查了二次函数的最值,根据二次函数的增减性分类讨论是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)△ABC的面积为.【分析】(1)计算判别式的值得到△=4m2,从而得到△>0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x=4±m,即b=4+m,c=4﹣m,讨论:当b=a=6时,即4+m=6,解得m=2,利用勾股定理计算出底边上的高,然后计算△ABC的面积;当c=a时,即4﹣m=6,解得m=﹣2,即a=c=6,b=2,利用同样方法计算△ABC的面积.【详解】(1)证明:△=(﹣8)2﹣4×(16﹣m2)=4m2,∵m≠0,∴m2>0,∴△>0,∴此方程总有两个不相等的实数根;(2)解:∵∴,即b=4+m,c=4﹣m,∵m≠0∴b≠c当b=a时,4+m=6,解得m=2,即a=b=6,c=2,如图,AB=AC=6,BC=2,AD为高,则BD=CD=1,∴∴△ABC的面积为:×2×=;当c=a时,4﹣m=6,解得m=﹣2,即a=c=6,b=2,如图,AB=AC=6,BC=2,AD为高,则BD=CD=1,∴∴△ABC的面积为:×2×=,即△ABC的面积为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:①当△>0,方程有两个不相等的实数根;②当△=0,方程有两个相等的实数根;③当△<0,方程没有实数根.也考查了三角形三边的关系.20、(1)见解析;(2)1【分析】(1)根据两个角对应相等判定两个三角形相似即可;(2)根据相似三角形的性质,对应边成比例即可求解.【详解】(1)证明:四边形是矩形,,,,.(2).,,,,,,.答:线段的长为1.【点睛】本题考查了相似三角形的判定和性质,解决本题的关键是掌握相似三角形的判定方法和性质.21、(1);(2)对称轴l与⊙C相交,见解析;(3)P(30,﹣2)或(41,100)【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)分∠ACP=90°、∠CAP=90°两种情况,分别求解即可.【详解】解:(1)设抛物线为y=a(x﹣11)2﹣,∵抛物线经过点A(0,8),∴8=a(0﹣11)2﹣,解得a=,∴抛物线为y==;(2)设⊙C与BD相切于点E,连接CE,则∠BEC=∠AOB=90°.∵y==0时,x1=11,x2=1.∴A(0,8)、B(1,0)、C(11,0),∴OA=8,OB=1,OC=11,BC=10;∴AB===10,∴AB=BC.∵AB⊥BD,∴∠ABC=∠EBC+90°=∠OAB+90°,∴∠EBC=∠OAB,∴,∴△OAB≌△EBC(AAS),∴OB=EC=1.设抛物线对称轴交x轴于F.∵x=11,∴F(11,0),∴CF=11﹣11=5<1,∴对称轴l与⊙C相交;(3)由点A、C的坐标得:直线AC的表达式为:y=﹣x+8,①当∠ACP=90°时,则直线CP的表达式为:y=2x﹣32,联立直线和抛物线方程得,解得:x=30或11(舍去),故点P(30,﹣2);当∠CAP=90°时,同理可得:点P(41,100),综上,点P(30,﹣2)或(41,100);【点睛】本题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识,正确表示出S△PAC=S△AQP+S△CQP是解题关键.22、(1)见解析;(2)【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)连接AC,可证AB=BC,由勾股定理可求出BD=.【详解】(1)证明:∵∠ABD=90°,E是AD的中点,∴BE=DE=AE,∵AD=2BC,∴BC=DE,∵AD∥BC,∴四边形BCDE为平行四边形,∵BE=DE,∴四边形BCDE为菱形;(2)连接AC,如图,∵由(1)得BC=BE,AD∥BC,∴四边形ABCE为平行四边形,∵AC⊥BE,∴四边形ABCE为菱形,∴BC=AB=2,AD=2BC=4,∵∠ABD=90°,∴BD===.【点睛】本题考查菱形的判定和性质、直角三角形斜边中线的性质、等腰三角形的判定,勾股定理等知识,解题的关键是熟练掌握菱形的判定方法23、(1)50,补图见解析;(2)306人;(3).【分析】(1)根据统计图可以求得本次调查的人数以及发言为和的人数,从而可以将直方图补充完整;(2)根据统计图中的数据可以估计在这一天里发言次数不少于12次的人数;(3)根据题意可以求得发言次数为和的人数,从而可以画出树状图,得到所抽的两位代表恰好都是男士的概率.【详解】解:(1)由统计图可得,本次调查的人数为:10÷20%=50,发言次数为C的人数为:50×30%=15,发言次数为F的人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×10%=5,故答案为:50,补全的直方图如图所示,(2)1700×(8%+10%)=306,即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306;(3)由统计图可知,发言次数为A的人数有:50×6%=3,发言次数为E的人数有:50×8%=4,由题意可得,故所抽的两位代表恰好都是男士的概率是,即所抽的两位代表恰好都是男士的概率是.【点睛】本题考查列表法与树状图法、总体、个体、样本、样本容量、频数分布直方图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.24、(Ⅰ),PA=4;(Ⅱ),【分析】(Ⅰ)易得△OAC是等边三角形即∠AOC=60°,又由PC是○O的切线故PC⊥OC,即∠OCP=90°可得∠P的度数,由OC=4可得PA的长度(Ⅱ)由(Ⅰ)知△OAC是等边三角形,易得∠APC=45°;过点C作CD⊥AB于点D,易得AD=AO=CO,在Rt△DOC中易得CD的长,即可求解【详解】解:(Ⅰ)∵AB是○O的直径,∴OA是○O的半径.∵∠OAC=60°,OA=OC,∴△OAC是等边三角形.∴∠AOC=60°.∵PC是○O的切线,OC为○O的半径,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如图②,过点C作CD⊥AB于点D.∵△OAC是等边三角形,CD⊥AB于点D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【点睛】此题主要考查圆的综合应用25、(1)50;144;(2)详见解析;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论