版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列事件是必然事件的()A.抛掷一枚硬币,四次中有两次正面朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环D.若a是实数,则|a|≥02.在△ABC中,D是AB中点,E是AC中点,若△ADE的面积是3,则△ABC的面积是()A.3 B.6 C.9 D.123.一组数据-3,2,2,0,2,1的众数是()A.-3 B.2 C.0 D.14.下列各数中,属于无理数的是()A. B. C. D.5.如图所示,将一个含角的直角三角板绕点逆时针旋转,点的对应点是点,若点、、在同一条直线上,则三角板旋转的度数是()A. B. C. D.6.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20° B.30° C.40° D.50°7.已知正多边形的边心距与边长的比为,则此正多边形为()A.正三角形 B.正方形 C.正六边形 D.正十二边形8.如图,在菱形中,,是线段上一动点(点不与点重合),当是等腰三角形时,()A.30° B.70° C.30°或60° D.40°或70°9.如图,点是内一点,,,点、、、分别是、、、的中点,则四边形的周长是()A.24 B.21 C.18 D.1410.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是().A.3个都是黑球 B.2个黑球1个白球C.2个白球1个黑球 D.至少有1个黑球11.如图,⊙O的弦AB⊥OC,且OD=2DC,AB=,则⊙O的半径为()A.1 B.2 C.3 D.912.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是()A. B. C. D.二、填空题(每题4分,共24分)13.某校七年级共名学生参加数学测试,随机抽取名学生的成绩进行统计,其中名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有______人.14.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.15.如图,点,,都在上,连接,,,,,,则的大小是______.16.已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个实数根,则m的取值范围是_____.17.分解因式:x3-4x18.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.三、解答题(共78分)19.(8分)因2019年下半年猪肉大涨,某养猪专业户想扩大养猪场地,但为了节省材料,利用一面墙(墙足够长)为一边,用总长为120的材料围成了如图所示①②③三块矩形区域,而且这三块矩形区域的面积相等,设的长度为(),矩形区域的面积().(1)求与之间的函数表达式,并注明自变量的取值范围.(2)当为何值时,有最大值?最大值是多少?20.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE//AB;(2)若CD=3,求四边形BEDF的周长.21.(8分)汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?22.(10分)一艘运沙船装载着5000m3沙子,到达目的地后开始卸沙,设平均卸沙速度为v(单位:m3/小时),卸沙所需的时间为t(单位:小时).(1)求v关于t的函数表达式,并用列表描点法画出函数的图象;(2)若要求在20小时至25小时内(含20小时和25小时)卸完全部沙子,求卸沙的速度范围.23.(10分)已知关于x的一元二次方程x1﹣1(a﹣1)x+a1﹣a﹣1=0有两个不相等的实数根x1,x1.(1)若a为正整数,求a的值;(1)若x1,x1满足x11+x11﹣x1x1=16,求a的值.24.(10分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.25.(12分)如图,是中边上的中点,交于点,是中边上的中点,且与交于点.(1)求的值.(2)若,求的长.(用含的代数式表示)26.有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.
参考答案一、选择题(每题4分,共48分)1、D.【解析】试题解析:A、是随机事件,不符合题意;B、是随机事件,不符合题意;==C、是随机事件,不符合题意;D、是必然事件,符合题意.故选D.考点:随机事件.2、D【分析】根据相似三角形的性质与判定即可求出答案.【详解】解:∵D是AB中点,E是AC中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∴S△ABC=4S△ADE=12,故选:D.【点睛】本题考查了相似三角形的面积问题,掌握相似三角形的性质与判定是解题的关键.3、B【解析】一组数据中出现次数最多的数据是众数,根据众数的定义进行求解即可得.【详解】数据-3,2,2,0,2,1中,2出现了3次,出现次数最多,其余的都出现了1次,所以这组数据的众数是2,故选B.【点睛】本题考查了众数的定义,熟练掌握众数的定义是解题的关键.4、A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【详解】A、是无理数,故本选项正确;
B、=2,是有理数,故本选项错误;
C、0,是有理数,故本选项错误;
D、1,是有理数,故本选项错误;
故选:A.【点睛】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.5、D【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【详解】解:旋转角是故选:D.【点睛】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.6、C【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.7、B【分析】边心距与边长的比为,即边心距等于边长的一半,进而可知半径与边心距的夹角是15度.可求出中心角的度数,从而得到正多边形的边数.【详解】如图,圆A是正多边形的内切圆;∠ACD=∠ABD=90°,AC=AB,CD=BD是边长的一半,当正多边形的边心距与边长的比为,即如图有AB=BD,则△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多边形的中心角是90度,所以它的边数=360÷90=1.故选:B.【点睛】本题利用了正多边形与它的内切圆的关系求解,转化为解直角三角形的计算.8、C【分析】根据是等腰三角形,进行分类讨论【详解】是菱形,,不符合题意所以选C9、B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半,求出,然后代入数据进行计算即可得解.【详解】∵E、F、G、H分别是AB、AC、CD、BD的中点,
∴,∴四边形EFGH的周长,
又∵AD=11,BC=10,
∴四边形EFGH的周长=11+10=1.
故选:B.【点睛】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.10、D【分析】根据白球两个,摸出三个球必然有一个黑球.【详解】解:A袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A不是必然事件;B.C.袋子中有4个黑球,有可能摸到的全部是黑球,B、C有可能不发生,所以B、C不是必然事件;D.白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D正确.故选D.【点睛】本题考查随机事件,解题关键在于根据题意对选项进行判断即可.11、C【分析】根据垂径定理可得AD=AB,由OD=2DC可得OD=OC=OA,利用勾股定理列方程求出OA的长即可得答案.【详解】∵⊙O的弦AB⊥OC,AB=,∴AD=AB=,∵OD=2DC,OA=OC,OC=OD+DC,∴OD=OC=OA,∴OA2=(OA)2+()2,解得:OA=3,(负值舍去),故选:C.【点睛】本题主要考查垂径定理及勾股定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧;熟练掌握垂径定理是解题关键.12、D【分析】根据三角形全等的判定定理逐项判断即可.【详解】A、在和中,则,此项不符题意B、在和中,则,此项不符题意C、在和中,则,此项不符题意D、在和中,,但两组相等的对应边的夹角和未必相等,则不能证明,此项符合题意故选:D.【点睛】本题考查了三角形全等的判定定理,熟记各定理是解题关键.二、填空题(每题4分,共24分)13、152.【解析】随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数.【详解】随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀,∴样本优秀率为:20÷50=40%,又∵某校七年级共380名学生参加数学测试,∴该校七年级学生在这次数学测试中达到优秀的人数为:380×40%=152人.故答案为:152.【点睛】本题考查了用样本估计总体,解题的关键是求样本的优秀率.14、1【分析】极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值,根据极差的定义即可解答.【详解】解:由题意可知,极差为28−12=1,
故答案为:1.【点睛】本题考查了极差的定义,解题时牢记定义是关键.15、【分析】根据题意可知△ABC是等腰三角形,∠BAO=20°,可得出∠AOB的度数,根据同弧所对的圆周角是圆心角的一半即可得出答案.【详解】解:∵AO=OB∴△AOB是等腰三角形∵∠BAO=20°∴∠OBA=20°,∠AOB=140°∵∠AOB=2∠ACB∴∠ACB=70°故答案为:70°【点睛】本题主要考查的是同弧所对的圆周角是圆心角的一半以及圆的基本性质,掌握这两个知识点是解题的关键.16、且.【详解】∵关于x的一元二次方程(m﹣1)1x1+(1m+1)x+1=0有两个不相等的实数根,∴△=b1﹣4ac>0,即(1m+1)1﹣4×(m﹣1)1×1>0,解这个不等式得,m>,又∵二次项系数是(m﹣1)1≠0,∴m≠1故M得取值范围是m>且m≠1.故答案为m>且m≠1.考点:根的判别式17、x(x-2y)2【分析】首先提取公因式x,然后利用完全平方公式进行分解.【详解】解:原式=x(x2-4xy+4y2)故答案为:x(x-2y)2【点睛】本题考查因式分解,掌握完全平方公式的结构是本题的解题关键.18、【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.三、解答题(共78分)19、(1);(2)时,有最大值【分析】(1)根据题意三个区域面积直接求与之间的函数表达式,并根据表示自变量的取值范围即可;(2)由题意对与之间的函数表达式进行配方,即可求的最大值.【详解】解:(1)假设为,由题意三个区域面积相等可得,区域1=区域2,面积法,得,由总长为120,故,得.所以,面积(2),所以当时,为最大值.【点睛】本题考查二次函数的性质在实际生活中的应用.最大值的问题常利用函数的增减性来解答.20、(1)见详解;(2)12【分析】(1)由角平分线性质,得到∠ABD=∠CBD,由EF是BD的中垂线,则BE=DE,则∠CBD=∠EDB,则∠ABD=∠EDB,即可得到答案;(2)先证明四边形BEDF是菱形,由DE∥AB,得到DE=CD=3,即可求出周长;【详解】(1)证明:∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,∵EF是BD的中垂线,∴BE=DE,BF=DF,∴∠CBD=∠EDB,∴∠ABD=∠EDB,∴DE∥AB;(2)解:与(1)同理,可证DF∥BC,∴四边形BEDF是平行四边形,∵BE=DE,∴四边形BEDF是菱形,∵AB=BC,DE∥AB,∴∠C=∠ABC=∠DEC,∴DE=CD=3,∴菱形BEDF的周长为:.【点睛】本题考查了菱形的判定和性质,垂直平分线的性质,角平分线的性质,以及等腰三角形的性质,解题的关键是熟练掌握所学的性质,从而正确的进行推导.21、2008年盈利3600万元.【分析】设该公司从2007年到2009年,每年盈利的年增长率是x,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利.【详解】解:设每年盈利的年增长率为x,由题意得:3000(1+x)2=4320,解得:,(不合题意,舍去),∴年增长率20%,∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元.【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.22、(1)v=,见解析;(2)200≤v≤1【分析】(1)直接利用反比例函数解析式求法得出答案;(2)直接利用(1)中所求解析式得出v的取值范围.【详解】(1)由题意可得:v=,列表得:v…1011625…t…246…描点、连线,如图所示:;(2)当t=20时,v==1,当t=25时,v==200,故卸沙的速度范围是:200≤v≤1.【点睛】本题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.23、(2)a=2,2;(2)a=﹣2.【分析】(2)根据关于x的一元二次方程x2-2(a-2)x+a2-a-2=0有两个不相等的实数根,得到△=[-2(a-2)]2-4(a2-a-2)>0,于是得到结论;
(2)根据x2+x2=2(a-2),x2x2=a2-a-2,代入x22+x22-x2x2=26,解方程即可得到结论.【详解】解:(2)∵关于x的一元二次方程x2﹣2(a﹣2)x+a2﹣a﹣2=0有两个不相等实数根,∴△=[﹣2(a﹣2)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=2,2;(2)∵x2+x2=2(a﹣2),x2x2=a2﹣a﹣2,∵x22+x22﹣x2x2=26,∴(x2+x2)2﹣3x2x2=26,∴[2(a﹣2)]2﹣3(a2﹣a﹣2)=26,解得:a2=﹣2,a2=6,∵a<3,∴a=﹣2.【点睛】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a的取值范围,再由根与系数的关系得出方程是解答此题的关键.24、(1)姐姐用时秒,妹妹用时秒,所以不能同时到,姐姐先到;(2)姐姐后退米或妹妹前进3米【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:即:∴a=5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 停车场扩建钢结构隔层施工合同
- 员工反馈与沟通渠道
- 物流运输可靠性规范
- 水库清淤治理施工合同
- 建筑门窗施工合同:教育设施建设
- 户外用品质量奖评定流程
- 团队协作升级计件奖罚新实践
- 旧城改造工程合同进度跟踪
- 农业计量管理准则
- 云云云金融服务期协议
- 公司组织机构管理制度
- 四年级数学上册 第4章《运算律》单元测评必刷卷(北师大版)
- 期末综合素养评价一(试题)-2024-2025学年三年级上册科学教科版
- 期中测试卷(试题)-2024-2025学年数学五年级上册北师大版
- (新版)特种设备安全管理取证考试题库(浓缩500题)
- 高二语文上学期期中模拟试卷03(解析版)
- 诺贝尔奖介绍-英文幻灯片课件
- 公司信息化调研情况汇报(4篇)
- 养猪合伙协议合同模板
- 球墨铸铁管、钢管顶管穿路施工方案
- 期中测试卷-2024-2025学年统编版语文五年级上册
评论
0/150
提交评论