




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.2.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是(
)A. B. C. D.3.计算的结果是()A. B. C. D.94.对于二次函数,下列说法正确的是()A.图象开口方向向下; B.图象与y轴的交点坐标是(0,-3);C.图象的顶点坐标为(1,-3); D.抛物线在x>-1的部分是上升的.5.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC. D.6.已知关于的一元二次方程的一个根是2,则的值为()A.-1 B.1 C.-2 D.27.如图,已知a∥b∥c,直线AC,DF与a、b、c相交,且AB=6,BC=4,DF=8,则DE=(
)A.12 B. C. D.38.将抛物线y=2xA.y=2(x-2)2-3 B.y=2(x-2)29.如图,四边形ABCD内接于⊙0,四边形ABCO是平行四边形,则∠ADC的度数为()A.30° B.45° C.60° D.75°10.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是()A. B. C. D.二、填空题(每小题3分,共24分)11.当______时,关于的方程有实数根.12.计算:﹣tan60°=_____.13.如图,已知在中,.以为直径作半圆,交于点.若,则的度数是________度.14.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,若开口∠1=60°,半径为,则这个“吃豆小人”(阴影图形)的面积为_____.15.如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_______;若将绕点顺时针旋转,则顶点所经过的路径长为__________.16.已知二次函数y=ax2+bx+c的图象如图所示,则a_____1,b_____1,c_____1.17.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为的大视力表制作一个测试距离为的小视力表.如图,如果大视力表中“”的高度是,那么小视力表中相应“”的高度是__________.18.反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________.三、解答题(共66分)19.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?20.(6分)⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且,求CD的长.21.(6分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.22.(8分)如图,点A,C,D,B在以O点为圆心,OA长为半径的圆弧上,AC=CD=DB,AB交OC于点E.求证:AE=CD.23.(8分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点,对称轴与轴交于点,连接,求的长.点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由.24.(8分)(1)解方程:.(2)已知:关于x的方程①求证:方程有两个不相等的实数根;②若方程的一个根是,求另一个根及k值.25.(10分)如图1,的余切值为2,,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P.(1)点D在运动时,下列的线段和角中,________是始终保持不变的量(填序号);①;②;③;④;⑤;⑥;(2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果与相似,但面积不相等,求此时正方形的边长.26.(10分)已知关于x的一元二次方程x2-2x+m-1=1.(1)若此方程有两个不相等的实数根,求实数m的取值范围;(2)当Rt△ABC的斜边长c=,且两直角边a和b恰好是这个方程的两个根时,求Rt△ABC的面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.2、A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.3、D【分析】根据负整数指数幂的计算方法:,为正整数),求出的结果是多少即可.【详解】解:,计算的结果是1.故选:D.【点睛】此题主要考查了负整数指数幂:,为正整数),要熟练掌握,解答此题的关键是要明确:(1)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(2)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.4、D【解析】二次函数y=2(x+1)2-3的图象开口向上,顶点坐标为(-1,-3),对称轴为直线x=-1;当x=0时,y=-2,所以图像与y轴的交点坐标是(0,-2);当x>-1时,y随x的增大而增大,即抛物线在x>-1的部分是上升的,故选D.5、D【解析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.6、D【分析】把代入原方程得到关于的一元一次方程,解方程即可.【详解】解:把代入原方程得:故选D.【点睛】本题考查的是一元二次方程的解的含义,掌握方程解的含义是解题的关键.7、C【解析】解:∵a∥b∥c,∴,∵AB=6,BC=4,DF=8,∴,∴DE=.故选C.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理内容是关键:三条平行线截两条直线,所得的对应线段成比例.8、B【解析】根据“左加右减,上加下减”的规律求解即可.【详解】y=2x2向右平移2个单位得y=2(x﹣2)2,再向上平移3个单位得y=2(x﹣2)2+3.故选B.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.9、C【分析】由题意根据平行四边形的性质得到∠ABC=∠AOC,根据圆内接四边形的性质、圆周角定理列式计算即可.【详解】解:∵四边形ABCO是平行四边形,∴∠ABC=∠AOC,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,由圆周角定理得,∠ADC=∠AOC,∴∠ADC=60°,故选:C.【点睛】本题考查的是圆内接四边形的性质、圆周角定理以及平行四边形的性质,掌握圆内接四边形的对角互补是解题的关键.10、C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.二、填空题(每小题3分,共24分)11、【分析】根据题意分关于的方程为一元一次方程和一元二次方程进行分析计算.【详解】解:①当关于的方程为一元一次方程时,有,解得,又因为时,方程无解,所以;②当关于的方程为一元二次方程时,根据题意有,解得;综上所述可知:.故答案为:.【点睛】本题考查一元二次方程根的判别式,解答此题时要注意关于的方程为一元一次方程的情况.12、2.【分析】先运用二次根式的性质和特殊角的三角函数进行化简,然后再进行计算即可.【详解】解:﹣tan60°=3﹣=2.故答案为:2.【点睛】本题考查了基本运算,解答的关键是灵活运用二次根式的性质对二次根式进行化简、牢记特殊角的三角函数值.13、1【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【详解】解:连接AD、OD,
∵AB为直径,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴
∴∠ABD=70°,
∴∠AOD=1°
∴的度数1°;
故答案为1.【点睛】此题考查了圆周角定理以及等腰三角形的性质,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14、5π【解析】∵∠1=60°,∴图中扇形的圆心角为300°,又∵扇形的半径为:,∴S阴影=.故答案为.15、3.5;【分析】(1)利用△ABC所在的正方形的面积减去四周三个直角三角形的面积,列式计算即可得解;(2)根据勾股定理列式求出AC,然后利用弧长公式列式计算即可得解.【详解】(1)△ABC的面积=3×3−×2×3−×1×3−×1×2,=9−3−1.5-1=3.5;(2)由勾股定理得,AC=,所以,点A所经过的路径长为故答案为:3.5;.【点睛】本题考查了利用旋转的性质,弧长的计算,熟练掌握网格结构,求出AC的长是解题的关键.16、<<>【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:由抛物线的开口方向向下可推出a<1;因为对称轴在y轴左侧,对称轴为x=<1,又因为a<1,∴b<1;由抛物线与y轴的交点在y轴的正半轴上,∴c>1.【点睛】本题考查了二次函数的图象和性质,属于简单题,熟悉二次函数的图象是解题关键.17、【分析】先利用平行线证明相似,再利用相似三角形的性质得到比例式,即可计算出结果.【详解】解:如图,
由题意得:CD∥AB,
∴,,∵AB=3.5cm,BE=5m,DE=3m,,∴CD=2.1cm,
故答案是:2.1cm.【点睛】本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行得到相似列出比例式,可以计算出结果.18、没有实数根【解析】分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出1xy>11,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.详解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,∴a>-4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于11,∴1xy>11,即a+4>6,a>1∴a>1.∴△=(-1)1-4(a-1)×=1-a<0,∴关于x的方程(a-1)x1-x+=0没有实数根.故答案为:没有实数根.点睛:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.三、解答题(共66分)19、(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.20、2(cm)【分析】先求出圆的半径,再通过作OP⊥CD于P,求出OP长,再根据勾股定理求出DP长,最后利用垂径定理确定CD长度.【详解】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE•sin∠DEB=,∴PD==,∴CD=2PD=2(cm).【点睛】本题考查了垂径定理,勾股定理及直角三角形的性质,根据题意作出辅助线,构造直角三角形及构造出符合垂径定理的条件是解答此题的关键.21、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当t=s或s时,△APQ与△ADB相似.【分析】(1)根据正切的定义求出BC,得到点B的坐标;(2)根据△ABC∽△ADB,得到=,代入计算求出AD,得到点D的坐标;(3)分△APQ∽△ABD、△AQP∽△ABD两种情况,根据相似三角形的性质列式计算即可.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵∠ACB=90°,tan∠BAC=,∴=,即=,解得,BC=3,∴点B的坐标为(1,3);(2)如图1,作BD⊥BA交x轴于点D,则∠ACB=∠ABD=90°,又∠A=∠A,∴△ABC∽△ADB,∴=,在Rt△ABC中,AB===5,∴=,解得,AD=,则OD=AD﹣AO=,∴点D的坐标为(,0);(3)存在,由题意得,AP=2t,AQ=﹣t,当PQ⊥AB时,PQ∥BD,∴△APQ∽△ABD,∴=,即=,解得,t=,当PQ⊥AD时,∠AQP=∠ABD,∠A=∠A,∴△AQP∽△ABD,∴=,即=,解得,t=,综上所述,当t=s或s时,△APQ与△ADB相似.【点睛】本题考查的是相似三角形的判定和性质、坐标与图形性质,掌握相似三角形的判定定理和性质定理是解题的关键.22、证明见解析【解析】试题分析:连接OC,OD,根据弦相等,得出它们所对的弧相等,得到=,再得到它们所对的圆心角相等,证明得到又因为即可证明.试题解析:证明:方法一:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,,,,,,,.方法二:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,∵∠CAO=∠CAE+∠EAO,∠AEC=∠AOC+∠EAO,∴∠CAO=∠AEC,在中,∴∠ACO=∠CAO,∴∠ACO=∠AEC,,,.方法三:连接AD,OC,OD,∵AC=DB,=,∴∠ADC=∠DAB,∴CD∥AB,∴∠AEC=∠DCO,∵AC=CD,AO=DO,∴CO⊥AD,∴∠ACO=∠DCO,∴∠ACO=∠AEC,∴AC=AE,∵AC=CD,∴AE=CD.23、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)【分析】(1)利用待定系数法即可求出结论;(2)先求出顶点D的坐标,然后分别求出BE和DE的长,利用勾股定理即可求出结论;(3)先求出BC的长,然后根据三角形的面积公式即可求出点F的纵坐标,从而求出结论.【详解】解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),∴将A(0,3),B(-1,0)代入得:,解得:则抛物线解析式为y=-x2+2x+3;(2)y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4),∵
对称轴与
x
轴交于点E
,∴
DE=4,OE=1
,∵
B(﹣1,0),∴
BO=1,∴
BE=2,在
RtBED
中,根据勾股定理得:
BD==2(3)抛物线的对称轴为直线x=1由对称性可得:点C的坐标为(3,0)∴BC=3-(-1)=4∵的面积为,∴BC·=4解得:=2或-2∴点F的坐标为(1,2)或(1,-2)即存在点F,点F(1,2)或(1,-2)【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、勾股定理和三角形的面积公式是解决此题的关键.24、(1)x1=1,x1=1;(1)①见解析;②另一个根为1,【分析】(1)把方程x1﹣3x+1=0进行因式分解,变为(x﹣1)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;
(1)①由△=b1﹣4ac=k1+8>0,即可判定方程有两个不相等的实数根;
②首先将x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【详解】(1)解:x1﹣3x+1=0,(x﹣1)(x﹣1)=0,x1=1,x1=1;(1)①证明:∵a=1,b=k,c=﹣1,∴△=b1﹣4ac=k1﹣4×1×(﹣1)=k1+8>0,∴方程有两个不相等的实数根;②解:当x=﹣1时,(﹣1)1﹣k﹣1=0,解得:k=﹣1,则原方程为:x1﹣x﹣1=0,即(x﹣1)(x+1)=0,解得:x1=1,x1=﹣1,所以另一个根为1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a,b,c是常数且a≠0)的根的判别式及根与系数的关系;根判别式△=b1−4ac:(1)当△>0时,一元二次方程有两个不相等的实数根;(1)当△=0时,一元二次方程有两个相等的实数根;(3)当△<0时,一元二次方程没有实数根;若x1,x1为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新生儿简易胎龄评估法
- Cephaibol-D-生命科学试剂-MCE
- 动保行业4月跟踪报告:4月圆环、伪狂、腹泻等疫苗批签发增速突出大环内酯类原料药延续强势表现
- A股市场2025年6月投资策略报告:震荡行情静待增量催化
- 2025年绿色建筑示范项目资金申请与绿色建筑产业政策优化报告
- 2025年工业互联网平台安全多方计算在智能工厂生产设备状态实时监控与报警中的应用报告
- 2025年高端医疗器械国产化替代下的产业政策与环境适应性研究报告
- 2025年文化与科技融合趋势下的数字文创产业政策研究报告
- 数字化转型背景下的商业地产项目运营策略与客户体验优化报告
- 2025年潮玩产业分析:收藏价值与文化推广策略研究报告
- 2025年轨道车司机(中级)职业技能鉴定参考试题库(含答案)
- 香港专才移民合同协议
- 猫咪借配合同协议
- 2024版压力容器设计审核机考题库-多选3-3
- 2025年中考地理热点素材题(含答案)
- 交互装置设计课程介绍
- 油品泄漏应急演练方案
- 慢性阻塞性肺疾病急性加重期合并II型呼吸衰竭个案护理
- DB51-T 3163-2023 四川省集中式饮用水水源保护区勘界定标技术指南
- 北京市朝阳区2024-2025学年七年级上学期期末考试数学试卷 (解析版)
- 路由与交换技术试题及答案
评论
0/150
提交评论