山东省青岛4中2022年数学九年级第一学期期末经典试题含解析_第1页
山东省青岛4中2022年数学九年级第一学期期末经典试题含解析_第2页
山东省青岛4中2022年数学九年级第一学期期末经典试题含解析_第3页
山东省青岛4中2022年数学九年级第一学期期末经典试题含解析_第4页
山东省青岛4中2022年数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且.图象上有一点在轴下方,则下列判断正确的是()A. B. C. D.2.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为()A.6 B.8C.10 D.123.从1、2、3、4四个数中随机选取两个不同的数,分别记为、,则关于的一元二次方程有实数解的概率为()A. B. C. D.4.下列说法正确的是()A.打开电视机,正在播放广告是必然事件B.天气预报明天下雨的概率为%,说明明天一定会下雨C.买一张体育彩票会中奖是可能事件D.长度分别为3,5,9厘米的三条线段不能围成一个三角形是随机事件5.如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为()A. B. C. D.6.如图,在平面直角坐标系中,已知点的坐标是,点是曲线上的一个动点,作轴于点,当点的橫坐标逐渐减小时,四边形的面积将会()A.逐渐增大 B.不变 C.逐渐减小 D.先减小后增大7.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.8.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B. C. D.9.如图,内接于⊙,,,则⊙半径为()A.4 B.6 C.8 D.1210.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在.和,则该袋子中的白色球可能有()A.6个 B.16个 C.18个 D.24个11.若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为()A. B. C. D.12.如何求tan75°的值?按下列方法作图可解决问题,如图,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延长CB至点M,在射线BM上截取线段BD,使BD=AB,连接AD,依据此图可求得tan75°的值为()A. B. C. D.二、填空题(每题4分,共24分)13.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x…-2023…y…8003…当x=-1时,y=__________.14.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.15.点A(﹣5,y1),B(3,y2)都在双曲线y=,则y1,y2的大小关系是_____.16.有一块三角板,为直角,,将它放置在中,如图,点、在圆上,边经过圆心,劣弧的度数等于_______17.如图,在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B=_____°.18.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是_____.三、解答题(共78分)19.(8分)先化简,再求值:÷(1+x+),其中x=tan60°﹣tan45°.20.(8分)(1)计算:(2)如图是一个几何体的三视图,根据图示的数据求该几何体的表面积.21.(8分)解方程:x2﹣x﹣12=1.22.(10分)计算:(1)()(2)-14+23.(10分)如图,是的直径,直线与相切于点.过点作的垂线,垂足为,线段与相交于点.(1)求证:是的平分线;(2)若,求的长.24.(10分)在一个不透明的盒子里装有黑、白两种颜色的球共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是试验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024806001800摸到白球的频率0.650.620.5930.6040.60.60.6(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为;(3)试估算盒子里黑、白两种颜色的球各有多少个?25.(12分)用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣1.(2)x2+5x﹣4=2.26.计算:=_________。

参考答案一、选择题(每题4分,共48分)1、D【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.2、D【解析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.3、C【分析】先根据一元二次方程有实数根求出ac≤4,继而画树状图进行求解即可.【详解】由题意,△=42-4ac≥0,∴ac≤4,画树状图如下:a、c的积共有12种等可能的结果,其中积不大于4的有6种结果数,所以a、c的积不大于4(也就是一元二次方程有实数根)的概率为,故选C.【点睛】本题考查了一元二次方程根的判别式,列表法或树状图法求概率,得到ac≤4是解题的关键.4、C【分析】根据必然事件,随机事件发生的可能性逐一判断即可.【详解】A.打开电视机,正在播放广告是随机事件,故错误;B.天气预报明天下雨的概率为%,明天也不一定会下雨,故错误;C.买一张体育彩票会中奖是可能事件,故正确;D.长度分别为3,5,9厘米的三条线段不能围成一个三角形是必然事件,故错误;故选:C.【点睛】本题主要考查随机事件和必然事件,掌握随机事件和必然事件发生的可能性是解题的关键.5、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.6、C【分析】设点P的坐标,表示出四边形OAPB的面积,由反比例函数k是定值,当点P的横坐标逐渐减小时,四边形OAPB的面积逐渐减小.【详解】点A(0,2),则OA=2,

设点,则,

∵为定值,

∴随着点P的横坐标的逐渐减小时,四边形AONP的面积逐渐减小

故选:C.【点睛】考查反比例函数k的几何意义,用点的坐标表示出四边形的面积是解决问题的关键.7、D【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.8、B【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选B.【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.9、C【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=1,∴△OBC是等边三角形,∴OB=BC=1.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.10、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,

∴摸到白球的频率为1-0.15-0.45=0.4,

故口袋中白色球的个数可能是40×0.4=16个.

故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.11、D【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】∵△ABC∽△DEF,△ABC与△DEF的面积比是,∴△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选D.【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12、B【解析】在直角三角形ABC中,利用30度所对的直角边等于斜边的一半表示出AB的长,再利用勾股定理求出BC的长,由CB+BD求出CD的长,在直角三角形ACD中,利用锐角三角函数定义求出所求即可.【详解】在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,∴AB=BD=2k,∠BAD=∠BDA=15°,BC=k,∴∠CAD=∠CAB+∠BAD=75°,在Rt△ACD中,CD=CB+BD=k+2k,则tan75°=tan∠CAD===2+,故选B【点睛】本题考查了解直角三角形,熟练掌握三角函数是解题的关键.二、填空题(每题4分,共24分)13、3【解析】试题解析:将点代入,得解得:二次函数的解析式为:当时,故答案为:14、7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m15、y1<y1【分析】根据反比例函数图象上的点的坐标满足函数解析式,即可得到y1,y1的值,进而即可比较大小.【详解】∵点A(﹣5,y1),B(3,y1)都在双曲线y=上,当x=﹣5时,y1=﹣,当x=3时,y1=,∴y1<y1.故答案是:y1<y1.【点睛】本题主要考查反比例函数图象上点的纵坐标大小比较,掌握反比例函数图象上的点的坐标满足函数解析式,是解题的关键.16、1°【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA,∵OA,OB为半径,∴,∴,∴劣弧的度数等于,故答案为:1.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.17、35°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,根据三角形内角与外角的关系可得∠B的大小.【详解】∵同弧所对的圆周角相等求得∠D=∠A=42°,且∠APD=77°是三角形PBD外角,∴∠B=∠APD−∠D=35°,故答案为:35°.【点睛】此题考查圆周角定理及其推论,解题关键明确三角形内角与外角的关系.18、3【详解】由三角形的重心是三角形三边中线的交点,根据中心的性质可得,G是将AB边上的中线分成2:1两个部分,所以重合部分的三角形与原三角形的相似比是1:3,所以重合部分的三角形面积与原三角形的面积比是1:9,因为原三角形的面积是所以27,所以重合部分三角形面积是3,故答案为:3.三、解答题(共78分)19、,.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【详解】原式•.当x=tan60°﹣tan45°1时,原式.【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20、(1)2;(2)90π【分析】(1)分别利用零次幂、乘方、负整数指数幂、特殊角的三角函数计算各项,最后作加减法;(2)根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【详解】解:(1)原式=1+(-1)+3-1=2;(2)由三视图可知:圆锥的高为12,底面圆的直径为10,

∴圆锥的母线为:13,

∴根据圆锥的侧面积公式:πrl=π×5×13=65π,

底面圆的面积为:πr2=25π,

∴该几何体的表面积为90π.

故答案为:90π.【点睛】本题主要考查了实数的混合运算和圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.21、x1=﹣3,x2=2.【解析】试题分析:方程左边利用十字相乘法分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解.试题解析:解:分解因式得:(x+3)(x﹣2)=1,可得x+3=1或x﹣2=1,解得:x1=﹣3,x2=2.22、(1)-;(2)-.【分析】(1)根据二次根式混合运算法则计算即可;(2)代入特殊角的三角函数值,根据0指数幂、负整数指数幂、二次根式及绝对值的运算法则计算即可.【详解】(1)()=(2-2)-6+6×=22-6+=6-4-6+=-.(2)-14+===-【点睛】本题考查实数的混合运算,熟练掌握运算法则并熟记特殊角的三角函数值是解题关键.23、(1)见解析;(2)【分析】(1)连接OC,可证得OC∥AD,根据平行线性质及等腰三角形性质,可得∠DAC=∠CAO,即得AC平分∠DAB;(2)连接,连接交于点,通过构造直角三角形,利用勾股定理和相似三角形求得,再求得,即可求得答案.【详解】(1)证明:如图,连接,∵与相切于点,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴是的平分线;(2)解:如图,连接,连接交于点,∵是的直径,∴,∵,∴,∵,∴,∴,为线段中点,∵,,∴,∴,即:,∴,∵,∴,∴,∵为直径中点,为线段中点,∴.【点睛】本题考查了切线的性质、角平分线的性质、相似三角形的判定、勾股定理、三角形中位线的性质等多方面的知识,是一道综合题型,考查学生各知识点的综合运用能力.24、(1)0.6;(2)0.6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论