山东省济南市礼乐初级中学2022-2023学年数学九年级第一学期期末联考试题含解析_第1页
山东省济南市礼乐初级中学2022-2023学年数学九年级第一学期期末联考试题含解析_第2页
山东省济南市礼乐初级中学2022-2023学年数学九年级第一学期期末联考试题含解析_第3页
山东省济南市礼乐初级中学2022-2023学年数学九年级第一学期期末联考试题含解析_第4页
山东省济南市礼乐初级中学2022-2023学年数学九年级第一学期期末联考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.抛物线的顶点坐标是()A. B. C. D.2.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.3.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-14.关于x的一元二次方程x2+2x﹣a=0的一个根是1,则实数a的值为()A.0 B.1 C.2 D.35.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.−2 B.2 C.−4 D.46.如图,直角△ABC中,,,,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分的面积是()A. B.C. D.7.如图,在中,是直径,点是上一点,点是弧的中点,于点,过点的切线交的延长线于点,连接,分别交,于点.连接,关于下列结论:①;②;③点是的外心,其中正确结论是()A.①② B.①③ C.②③ D.①②③8.二次函数的图象的顶点在坐标轴上,则m的值()A.0 B.2 C. D.0或9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②b2﹣4ac>0;③b>0;④4a﹣2b+c<0;⑤a+c<,其中正确结论的个数是()A.②③④ B.①②⑤ C.①②④ D.②③⑤10.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30° B.35° C.45° D.60°11.函数的自变量的取值范围是()A. B. C. D.且12.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三连个月投放单车数量的月平均增长率为x,则所列方程正确的是()A.1000(1+x)2=440 B.1000(1+x)2=1000C.1000(1+2x)=1000+440 D.1000(1+x)2=1000+440二、填空题(每题4分,共24分)13.反比例函数在第一象限内的图象如图,点是图象上一点,垂直轴于点,如果的面积为4,那么的值是__________.14.如图,直线与两坐标轴相交于两点,点为线段上的动点,连结,过点作垂直于直线,垂足为,当点从点运动到点时,则点经过的路径长为__________.15.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)16.已知a=3+2,b=3-2,则a2b+ab2=_________.17.设α、β是方程x2+2018x﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=_____.18.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.三、解答题(共78分)19.(8分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)20.(8分)AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E在AB的延长线上,∠A=∠BCE.(1)求证:CE是⊙O的切线;(2)若BC=BE,判定四边形OBCD的形状,并说明理由.21.(8分)某学校举行冬季“趣味体育运动会”,在一个箱内装入只有标号不同的三颗实心球,标号分别为1,2,3.每次随机取出一颗实心球,记下标号作为得分,再将实心球放回箱内。小明从箱内取球两次,若两次得分的总分不小于5分,请用画树状图或列表的方法,求发生“两次取球得分的总分不小于5分”情况的概率.22.(10分)如图,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图像写出使反比例函数的值大于一次函数的值的取值范围.23.(10分)如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动,当点不与点、重合时,过点作于点,连接,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为.(1)①的长为______;②的长用含的代数式表示为______;(2)当为矩形时,求的值;(3)当与重叠部分图形为四边形时,求与之间的函数关系式.24.(10分)先化简,再从中取一个恰当的整数代入求值.25.(12分)如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC上,AB=3,BC=4(1)求的值;(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP(Ⅰ)求的值;(Ⅱ)判断CP与AF的位置关系,并说明理由.26.为深化课程改革,提高学生的综合素质,我校开设了形式多样的校本课程.为了解校本课程在学生中最受欢迎的程度,学校随机抽取了部分学生进行调查,从A:天文地理;B:科学探究;C:文史天地;D:趣味数学;四门课程中选你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度;(2)请补全条形统计图;(3)根据本次调查,该校400名学生中,估计最喜欢“科学探究”的学生人数为多少?(4)为激发学生的学习热情,学校决定举办学生综合素质大赛,采取“双人同行,合作共进”小组赛形式,比赛题目从上面四个类型的校本课程中产生,并且规定:同一小组的两名同学的题目类型不能相同,且每人只能抽取一次,小琳和小金组成了一组,求他们抽到“天文地理”和“趣味数学”类题目的概率是多少?(请用画树状图或列表的方法求)

参考答案一、选择题(每题4分,共48分)1、D【分析】当时,是抛物线的顶点,代入求出顶点坐标即可.【详解】由题意得,当时,是抛物线的顶点代入到抛物线方程中∴顶点的坐标为故答案为:D.【点睛】本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.2、D【分析】根据中心对称图形以及轴对称图形的定义逐项判断即可.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.不是中心对称图形,是轴对称图形,此选项错误;B.是中心对称图形,不是轴对称图形,此选项错误;C.不是中心对称图形,是轴对称图形,此选项错误;D.既是中心对称图形,又是轴对称图形,此选项正确;故选:D.【点睛】本题考查的知识点是识别中心对称图形以及轴对称图形,掌握中心对称图形以及轴对称图形的特征是解此题的关键.3、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.4、D【分析】方程的解就是能使方程左右两边相等的未知数的值,把x=1代入方程,即可得到一个关于a的方程,即可解得实数a的值;【详解】解:由题可知,一元二次方程x2+2x﹣a=0的一个根是1,将x=1代入方程得,,解得a=3;故选D.【点睛】本题主要考查了一元二次方程的解,掌握一元二次方程的解是解题的关键.5、B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,

解得k=1.

故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6、A【分析】连结AD.根据图中阴影部分的面积=三角形ABC的面积-三角形ACD的面积-扇形ADE的面积,列出算式即可求解.【详解】解:连结AD.

∵直角△ABC中,∠A=90°,∠B=30°,AC=4,

∴∠C=60°,AB=4,

∵AD=AC,

∴三角形ACD是等边三角形,

∴∠CAD=60°,

∴∠DAE=30°,

∴图中阴影部分的面积=4×4÷2-4×2÷2-=4-π.

故选A.【点睛】本题考查了扇形面积的计算,解题的关键是将不规则图形的面积计算转化为规则图形的面积计算.7、C【分析】由于与不一定相等,根据圆周角定理可知①错误;连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可知②正确;先由垂径定理得到A为的中点,再由C为的中点,得到,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可知③正确;【详解】∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,∴=≠,∴∠BAD≠∠ABC,故①错误;连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90,∠EPA+∠EAP=∠EAP+∠GPD=90,∴∠GPD=∠GDP;∴GP=GD,故②正确;∵弦CF⊥AB于点E,∴A为的中点,即,又∵C为的中点,∴,∴,∴∠CAP=∠ACP,∴AP=CP.∵AB为圆O的直径,∴∠ACQ=90,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;故选C.【点睛】此题是圆的综合题,其中涉及到切线的性质,圆周角定理,垂径定理,圆心角、弧、弦的关系定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,平行线的判定,熟练掌握性质及定理是解决本题的关键.8、D【解析】试题解析:当图象的顶点在x轴上时,∵二次函数的图象的顶点在x轴上,∴二次函数的解析式为:∴m=±2.当图象的顶点在y轴上时,m=0,故选D.9、B【分析】令x=1,代入抛物线判断出①正确;根据抛物线与x轴的交点判断出②正确;根据抛物线的对称轴为直线x=﹣1列式求解即可判断③错误;令x=﹣2,代入抛物线即可判断出④错误,根据与y轴的交点判断出c=1,然后求出⑤正确.【详解】解:由图可知,x=1时,a+b+c<0,故①正确;∵抛物线与x轴有两个交点,∴△=>0,故②正确;∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x==﹣1,∴b=2a<0,故③错误;由图可知,x=﹣2时,4a﹣2b+c>0,故④错误;当x=0时,y=c=1,∵a+b+c<0,b=2a,∴3a+1<0,∴a<∴a+c<,故⑤正确;综上所述,结论正确的是①②⑤.故选:B.【点睛】本题主要考查二次函数的图像与性质,关键是根据题意及图像得到二次函数系数之间的关系,熟记知识点是前提.10、A【解析】试题分析:连接OA,根据直线PA为切线可得∠OAP=90°,根据正六边形的性质可得∠OAB=60°,则∠PAB=∠OAP-∠OAB=90°-60°=30°.考点:切线的性质11、C【解析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】由题意得,且,

解得:.

故选:C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.12、D【分析】根据题意可以列出相应的一元二次方程,从而可以解答本题得出选项.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:D.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,是关于增长率的问题.二、填空题(每题4分,共24分)13、1【分析】利用反比例函数k的几何意义得到|k|=4,然后利用反比例函数的性质确定k的值.【详解】解:∵△MOP的面积为4,∴|k|=4,∴|k|=1,∵反比例函数图象的一支在第一象限,∴k>0,∴k=1,故答案为:1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.14、【分析】根据直线与两坐标轴交点坐标的特点可得A、B两点坐标,由题意可得点M的路径是以AB的中点N为圆心,AB长的一半为半径的,求出的长度即可.【详解】解:∵AM垂直于直线BP,∴∠BMA=90°,∴点M的路径是以AB的中点N为圆心,AB长的一半为半径的,连接ON,∵直线y=-x+4与两坐标轴交A、B两点,∴OA=OB=4,∴ON⊥AB,∴∠ONA=90°,∵在Rt△OAB中,AB=,∴ON=,∴故答案为:.【点睛】本题考查了一次函数的综合题,涉及了两坐标轴交点坐标及点的运动轨迹,难点在于根据∠BMA=90°,判断出点M的运动路径是解题的关键,同学们要注意培养自己解答综合题的能力.15、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.16、6【解析】仔细观察题目,先对待求式提取公因式化简得ab(a+b),将a=3+2,b=3-2,代入运算即可.【详解】解:待求式提取公因式,得将已知代入,得故答案为6.【点睛】考查代数式求值,熟练掌握提取公因式法是解题的关键.17、4【分析】把、分别代入,可求得和的值,然后把求得的值代入计算即可.【详解】把、分别代入,得和-2=0,∴和,∴=(2-1)×(2+2)=4.故答案为4.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.18、1【解析】证明△ODA∽△CDO,则OD2=CD•DA,而则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即可求解.【详解】解:点A、B的坐标分别为(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即2n2﹣1n+16=(m+n﹣4)×n,解得:mn=1=k,故答案为1.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到三角形相似、一次函数等知识点,关键是通过设定点E的坐标,确定相关线段的长度,进而求解.三、解答题(共78分)19、4秒【分析】作AB⊥CF于B,根据方向角、勾股定理求出AB的长,根据题意比较得到消防车的警报声对听力测试是否会造成影响;求出造成影响的距离,根据速度计算即可.【详解】解:作AB⊥CF于B,由题意得:∠ACB=60°,AC=120米,则∠CAB=30°∴米,∴米,∵<110,∴消防车的警报声对学校会造成影响,造成影响的路程为米,∵秒,∴对学校的影响时间为4秒.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.20、(1)证明见解析;(2)四边形OBCD是菱形,理由见解析.【分析】(1)证明∠OCE=90°问题可解;(2)由同角的余角相等,可得∠BCO=∠BOC,再得到△BCO是等边三角形,故∠AOC=120°,再由垂径定理得到AF=CF,推出△COD是等边三角形问题可解.【详解】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OC=OA,∴∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:四边形OBCD是菱形,理由:∵BC=BE,∴∠E=∠ECB,∵∠BCO+∠BCE=∠COB+∠E=90°,∴∠BCO=∠BOC,∴BC=OB,∴△BCO是等边三角形,∴∠AOC=120°,∵F是AC的中点,∴AF=CF,∵OA=OC,∴∠AOD=∠COD=60°,∵OD=OC,∴△COD是等边三角形,∴CD=OD=OB=BC,∴四边形OBCD是菱形.【点睛】本题考查了切线的判定,菱形的判定,垂径定理,等边三角形的判定和性质,解答关键是根据题意找出并证明题目中的等边三角形.21、【分析】根据题意先画树状图展示所有9种等可能的结果数,再找出两次得分的总分不小于5分的结果数,然后根据概率公式求解.【详解】解:树状图如下:共有9种等可能的结果数,两次得分的总分不小于5分的结果数为3种,所以P=.【点睛】本题考查列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22、(1),;(2)x<-2,或0<x<1【分析】(1)把A(1,-k+4)代入解析式,即可求出k的值;把求出的A点坐标代入一次函数的解析式,即可求出b的值;从而求出这两个函数的表达式;

(2)将两个函数的解析式组成方程,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【详解】解:(1)由题意,得,∴k=2,∴A(1,2),2=b+1∴b=1,反比例函数表达式为:,一次函数表达式为:.(2)又由题意,得,,解得∴B(-2,-1),∴当x<-2,或0<x<1时,反比例函数大于一次函数的值.【点睛】本题考查了一次函数与反比例函数的综合,能正确看图象是解题的关键.23、(1)①3;②3t;(2);(3)当0<t≤时,S=-3t2+48t;当<t<3,S=t2−14t+1.【分析】(1)①根据勾股定理即可直接计算AB的长;②根据三角函数即可计算出PN;

(2)当▱PQMN为矩形时,由PN⊥AB可知PQ∥AB,根据平行线分线段成比例定理可得,即可计算出t的值.

(3)当▱PQMN与△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.▱PQMN在三角形内部时,Ⅱ.▱PQMN有部分在外边时.由三角函数可计算各图形中的高从而计算面积.【详解】解:(1)在Rt△ABC中,∠C=90°,AC=20,BC=2.

∴AB==3.

∴sin∠CAB=,

由题可知AP=5t,

∴PN=AP•sin∠CAB=5t•=3t.

故答案为:①3;②3t.

(2)当▱PQMN为矩形时,∠NPQ=90°,

∵PN⊥AB,

∴PQ∥AB,

∴,

由题意可知AP=CQ=5t,CP=20-5t,

∴,

解得t=,

即当▱PQMN为矩形时t=.

(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,

Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,

由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=2-5t,PN=QM=3t.

∴AN=AP•cosA=4t,BG=BQ•cosB=9-3t,QG=BQ•sinB=12-4t,

∵.▱PQMN在三角形内部时.有0<QM≤QG,

∴0<3t≤12-4t,

∴0<t≤.

∴NG=3-4t-(9-3t)=16-t.

∴当0<t≤时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16-t)=-3t2+48t.

Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQGN时,

即:0<12-4t<3t,解得:<t<3,

▱PQMN与△ABC重叠部分图形为梯形PQGN的面积S=NG(PN+QG)=(16−t)(3t+12−4t)=t2−14t+1.

综上所述:当0<t≤时,S=-3t2+48t.当<t<3,S=t2−14t+1.【点睛】本题考查了平行四边形的性质、勾股定理、矩形的性质、锐角三角函数等知识,关键是根据题意画出图形,分情况进行讨论,避免出现漏解.24、,0【分析】根据分式的混合运算法则进行计算化简,再代入符合条件的x值进行计算.【详解】解:原式====又∵且,,∴整数.∴原式=.【点睛】考核知识点:分式的化简求值.掌握分式的基本运算法则是关键.25、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论