宁夏石嘴山市平罗四中学2022-2023学年九年级数学第一学期期末考试试题含解析_第1页
宁夏石嘴山市平罗四中学2022-2023学年九年级数学第一学期期末考试试题含解析_第2页
宁夏石嘴山市平罗四中学2022-2023学年九年级数学第一学期期末考试试题含解析_第3页
宁夏石嘴山市平罗四中学2022-2023学年九年级数学第一学期期末考试试题含解析_第4页
宁夏石嘴山市平罗四中学2022-2023学年九年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.的面积为2,边的长为,边上的高为,则与的变化规律用图象表示大致是()A. B.C. D.2.如图,在高2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要()A.2m B.(2+2)m C.4m D.(4+2)m3.下列说法,错误的是()A.为了解一种灯泡的使用寿命,宜采用普查的方法B.一组数据8,8,7,10,6,8,9的众数是8C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差4.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A. B. C. D.5.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为()A.9 B.12 C.18 D.247.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°8.方程化为一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是()A.5,6,-8 B.5,-6,-8 C.5,-6,8 D.6,5,-89.下列命题是真命题的个数是().①64的平方根是;②,则;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A.1个 B.2个 C.3个 D.4个10.下列事件是随机事件的是()A.三角形内角和为度 B.测量某天的最低气温,结果为C.买一张彩票,中奖 D.太阳从东方升起二、填空题(每小题3分,共24分)11.如图,已知⊙O上三点A,B,C,半径OC=,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为____.12.如图,一段与水平面成30°角的斜坡上有两棵树,两棵树水平距离为,树的高度都是.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞____________.13.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离________cm.14.一个三角形的三边之比为,与它相似的三角形的周长为,则与它相似的三角形的最长边为____________.15.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是____.16.在二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x-2-101234y72-1-2m27则m的值为_____.17.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为的大视力表制作一个测试距离为的小视力表.如图,如果大视力表中“”的高度是,那么小视力表中相应“”的高度是__________.18.如图,边长为2的正方形ABCD,以AB为直径作⊙O,CF与⊙O相切于点E,与AD交于点F,则△CDF的面积为________________三、解答题(共66分)19.(10分)将矩形如图放置在平面直角坐标系中,为边上的一个动点,过点作交边于点,且,的长是方程的两个实数根,且.(1)设,,求与的函数关系(不求的取值范围);(2)当为的中点时,求直线的解析式;(3)在(2)的条件下,平面内是否存在点,使得以,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.20.(6分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.21.(6分)在△ABC中,∠ACB=90°,BC=kAC,点D在AC上,连接BD.(1)如图1,当k=1时,BD的延长线垂直于AE,垂足为E,延长BC、AE交于点F.求证:CD=CF;(2)过点C作CG⊥BD,垂足为G,连接AG并延长交BC于点H.①如图2,若CH=CD,探究线段AG与GH的数量关系(用含k的代数式表示),并证明;②如图3,若点D是AC的中点,直接写出cos∠CGH的值(用含k的代数式表示).22.(8分)某小区在绿化工程中有一块长为20m,宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为102m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.23.(8分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).24.(8分)如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.25.(10分)如图,矩形中,.为边上一动点(不与重合),过点作交直线于.(1)求证:;(2)当为中点时,恰好为的中点,求的值.26.(10分)如图,已知∠BAC=30°,把△ABC绕着点A顺时针旋转到△ADE的位置,使得点D,A,C在同一直线上.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状;(3)求∠AEC的度数.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据三角形面积公式得出与的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得∴∵∴与的变化规律用图象表示大致是故答案为:A.【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.2、B【解析】如图,由平移的性质可知,楼梯表面所铺地毯的长度为:AC+BC,∵在△ABC中,∠ACB=90°,∠BAC=30°,BC=2m,∴AB=2BC=4m,∴AC=,∴AC+BC=(m).故选B.点睛:本题的解题的要点是:每阶楼梯的水平面向下平移后刚好与AC重合,每阶楼梯的竖直面向右平移后刚好可以与BC重合,由此可得楼梯表面所铺地毯的总长度为AC+BC.3、A【分析】利用抽样调查、普查的特点和试用的范围和众数、方差的意义即可做出判断.【详解】A.灯泡数量很庞大,了解它的使用寿命不宜采用普查的方法,应该采用抽查的方法,所以A错误;B.众数是一组数据中出现次数最多的数值,所以8,8,7,10,6,8,9的众数是8正确;C.方差反映了一组数据与其平均数的偏离程度,正确;D.对于简单随机样本,可以用样本的方差去估计总体的方差,正确;故选A.【点睛】本题考查的是调查、众数、方差的意义,能够熟练掌握这些知识是解题的关键.4、B【分析】根据定义进行判断【详解】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B.【点睛】本题考查简单组合体的三视图.5、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;

B、是轴对称图形,不是中心对称图形,故此选项错误;

C、不是轴对称图形,不是中心对称图形,故此选项错误;

D、不是轴对称图形,是中心对称图形,故此选项错误;

故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、D【分析】根据位似图形的性质,再结合点A与点的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:∵△ABC与△是以坐标原点O为位似中心的位似图形,且A为的中心,∴△ABC与△的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△的面积等于4倍的△ABC的面积,即.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.7、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.8、C【分析】先将该方程化为一般形式,即可得出结论.【详解】解:先将该方程化为一般形式:.从而确定二次项系数为5,一次项系数为-6,常数项为8故选C.【考点】此题考查的是一元二次方程的项和系数,掌握一元二次方程的一般形式是解决此题的关键.9、C【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是,正确,是真命题;②,则不一定,可能;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.10、C【分析】一定发生或是不发生的事件是确定事件,可能发生也可能不发生的事件是随机事件,根据定义判断即可.【详解】A.该事件不可能发生,是确定事件;B.该事件不可能发生,是确定事件;C.该事件可能发生,是随机事件;D.该事件一定发生,是确定事件.故选:C.【点睛】此题考查事件的分类,正确理解确定事件和随机事件的区别并熟练解题是关键.二、填空题(每小题3分,共24分)11、1【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【详解】连接OA,∵∠ABC=10°,∴∠AOC=2∠ABC=60°,∵切线PA交OC延长线于点P,∴∠OAP=90°,∵OA=OC=,∴AP=OAtan60°=×=1.故答案为:1.【点睛】本题考查了圆的切线问题,掌握圆周角定理、圆的切线性质是解题的关键.12、1【分析】依题意可知所求的长度等于AB的长,通过解直角△ABC即可求解.【详解】如图,∵∠BAC=30,∠ACB=90,AC=,∴AB=AC/cos30=(m).故答案是:1.【点睛】本题考查了解直角三角形的应用−坡度坡角问题.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.13、cm【解析】试题分析:因为OE=OF=EF=10(cm),所以底面周长=10π(cm),将圆锥侧面沿OF剪开展平得一扇形,此扇形的半径OE=10(cm),弧长等于圆锥底面圆的周长10π(cm)设扇形圆心角度数为n,则根据弧长公式得:10π=,所以n=180°,即展开图是一个半圆,因为E点是展开图弧的中点,所以∠EOF=90°,连接EA,则EA就是蚂蚁爬行的最短距离,在Rt△AOE中由勾股定理得,EA2=OE2+OA2=100+64=164,所以EA=2(cm),即蚂蚁爬行的最短距离是2(cm).考点:平面展开-最短路径问题;圆锥的计算.14、18cm.【分析】由一个三角形的三边之比为3:6:4,可得与它相似的三角形的三边之比为3:6:4,又由与它相似的三角形的周长为39cm,即可求得答案.【详解】解:∵一个三角形的三边之比为3:6:4,∴与它相似的三角形的三边之比为3:6:4,∵与它相似的三角形的周长为39cm,∴与它相似的三角形的最长边为:39×=18(cm).

故答案为:18cm.【点睛】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例.15、【详解】解:选中女生的概率是:.16、-1【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【详解】解:根据图表可以得到,点(-2,7)与(4,7)是对称点,点(-1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,-1)是对称点,∴m=-1.【点睛】正确观察表格,能够得到函数的对称轴,联想到对称关系是解题的关键.17、【分析】先利用平行线证明相似,再利用相似三角形的性质得到比例式,即可计算出结果.【详解】解:如图,

由题意得:CD∥AB,

∴,,∵AB=3.5cm,BE=5m,DE=3m,,∴CD=2.1cm,

故答案是:2.1cm.【点睛】本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行得到相似列出比例式,可以计算出结果.18、【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,

∴AB、BC是⊙O的切线,

∵CF是⊙O的切线,

∴AF=EF,BC=EC,

∴FC=AF+DC,

设AF=x,则,DF=2-x,∴CF=2+x,

在RT△DCF中,CF2=DF2+DC2,

即(2+x)2=(2-x)2+22,解得x=,

∴DF=2-=,∴,故答案为:.【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.三、解答题(共66分)19、(1);(2)或;(3)存在.,,.【分析】(1)利用因式分解法解出一元二次方程,得到OA、OB的长,证明△AOE∽△ECD,根据相似三角形的性质列出比例式,整理得到y与x的函数关系;(2)列方程求出OE,利用待定系数法求出直线AE的解析式;(3)根据平行四边形的性质、坐标与图形性质解答.【详解】(1),,∴解得,.∵,∴,.∵,∴∠AEO+∠DEC=90,又∵∠AEO+∠OAE=90,∴∠OAE=∠CED,又∠AOE=∠ECD=90,∴,∴,∴,∴.(2)当为的中点时,.∵,∴.解得,.当时,设直线的解析式为,把A(0,8),E(4,0)代入得解得,∴;当时,设直线的解析式为,把A(0,8),E(8,0)代入得解得,∴直线的解析式为或.(3)当点F在线段OA上时,FA=BD=4,∴OF=4,即点F的坐标为(0,4),当点F在线段OA的延长线上时,FA=BD=4,∴OF=12,即点F的坐标为(0,12),当点F在线段BC右侧、AB∥DF时,DF=AB=12,∴点F的坐标为(24,4),综上所述,以A,D,B,F为顶点的四边形为平行四边形时,点F的坐标为(0,4)或(0,12)或(24,4).【点睛】本题考查的是一次函数的性质、相似三角形的判定和性质,掌握待定系数法求一次函数解析式的一般步骤、相似三角形的判定定理和性质定理是解题的关键.20、(1)相切,理由见解析;(2)DE=.【分析】(1)连接AD,OD,根据已知条件证得OD⊥DE即可;(2)根据勾股定理计算即可.【详解】解:(1)相切,理由如下:连接AD,OD,∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,AD==1.∵SACD=AD•CD=AC•DE,∴×1×3=×5DE.∴DE=.【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.21、(1)证明见解析;(2)①,证明见解析;②cos∠CGH=.【分析】(1)只要证明△ACF≌△BCD(ASA),即可推出CF=CD.(2)结论:.设CD=5a,CH=2a,利用相似三角形的性质求出AM,再利用平行线分线段成比例定理即可解决问题.(3)如图3中,设AC=m,则BC=km,m,想办法证明∠CGH=∠ABC即可解决问题.【详解】(1)证明:如图1中,∵∠ACB=90°,BE⊥AF∴∠ACB=∠ACF=∠AEB=90°∵∠ADE+∠EAD=∠BDC+∠DBC=90°,∠ADE=∠BDC,∴∠CAF=∠DBC,∵BC=AC,∴△ACF≌△BCD(ASA),∴CF=CD.(2)解:结论:.理由:如图2中,作AM⊥AC交CG的延长线于M.∵CG⊥BD,MA⊥AC,∴∠CAM=∠CGD=∠BCD=90°,∴∠ACM+∠CDG=90°,∠ACM+∠M=90°,∴∠CDB=∠M,∴△BCD∽△CAM,∴=k,∵CH=CD,设CD=5a,CH=2a,∴AM=,∵AM∥CH,∴,∴.(3)解:如图3中,设AC=m,则BC=km,m,∵∠DCB=90°,CG⊥BD,∴△DCG∽△DBC,∴DC2=DG•DB,∵AD=DC,∴AD2=DG•DB,∴,∵∠ADG=∠BDA,∴△ADG∽△BDA,∴∠DAG=∠DBA,∵∠AGD=∠GAB+∠DBA=∠GAB+∠DAG=∠CAB,∵∠AGD+∠CGH=90°,∠CAB+∠ABC=90°,∴∠CGH=∠ABC,∴.【点睛】本题为四边形综合探究题,考查相似三角形、三角函数等知识,解题时注意相似三角形的性质和平行线分线段成比例定理的应用.22、人行通道的宽度为1米.【分析】设人行通道的宽度为x米,根据矩形绿地的面积和为102平方米,列出关于x的一元二次方程,求解即可.【详解】设人行通道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=102,解得:x1=1,x2=(不合题意,舍去).答:人行通道的宽度为1米.【点睛】本题主要考查一元二次方程的实际应用----面积问题,根据题意,列出一元二次方程,是解题的关键.23、小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里【解析】试题分析:过P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.试题解析:如图:过P作PM⊥AB于M,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B码头的距离是海里,A、B两个码头间的距离是()海里.考点:解直角三角形的应用-方向角问题.24、(1)①;②1.5;(2)①5;②、,、5.【解析】(1)①根据直径所对的圆周角是直角判断△APQ为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ∽△QBA,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分与矩形的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ是直径,E在圆上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴,∴,∴BP=1.5;(2)①如图,BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴的半径是5.②如图,与矩形的一边相切有4种情况,如图1,当与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=,∴半径为.如图2,当与矩形ABCD边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论