版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市部分校2024届中考数学最后一模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.5 B.10 C.10 D.152.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=kx(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y23.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()A.个 B.个 C.个 D.个4.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是(A.y=x2+1 B.y=x5.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108 B.21×106 C.2.1×107 D.2.1×1066.下列计算中正确的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x7.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为()A.3×109 B.3×108 C.30×108 D.0.3×10108.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线9.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A. B.C. D.10.这个数是()A.整数 B.分数 C.有理数 D.无理数11.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.912.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.有一个根是0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.14.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.15.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.16.若向北走5km记作﹣5km,则+10km的含义是_____.17.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为____.18.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.20.(6分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.21.(6分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.求证:是⊙的切线;若,且,求⊙的半径与线段的长.22.(8分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.23.(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.24.(10分)如图,是的直径,是圆上一点,弦于点,且.过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点.(1)求证:与相切;(2)连接,求的值.25.(10分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.26.(12分)计算:(﹣2)2+20180﹣27.(12分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四边形EFGH=2E′G=10,故选B.【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.2、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;故选D.考点:反比例函数的性质.3、D【解析】
求出不等式组的解集,根据已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【详解】解不等式2x−a≥0,得:x≥,解不等式3x−b≤0,得:x≤,∵不等式组的整数解仅有x=2、x=3,则1<≤2、3≤<4,解得:2<a≤4、9≤b<12,则a=3时,b=9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.4、D【解析】
本题主要考查二次函数的解析式【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为y=a(x-故选D.【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.5、D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.6、C【解析】
根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A.x2+x2=2x2,故不正确;B.x6÷x3=x3,故不正确;C.(x3)2=x6,故正确;D.x﹣1=,故不正确;故选C.【点睛】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.7、A【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】将数据30亿用科学记数法表示为,故选A.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.8、C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.9、A【解析】
根据题意设未知数,找到等量关系即可解题,见详解.【详解】解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20,购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为,故选A.【点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.10、D【解析】
由于圆周率π是一个无限不循环的小数,由此即可求解.【详解】解:实数π是一个无限不循环的小数.所以是无理数.
故选D.【点睛】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.11、B【解析】
直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.【详解】∵一组数据1,7,x,9,5的平均数是2x,∴,解得:,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.故选B.【点睛】此题主要考查了中位数以及平均数,正确得出x的值是解题关键.12、A【解析】
判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.【详解】∵一次函数y=kx+b的图像经过第一、三、四象限∴k>0,b<0∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.【点睛】根的判别式二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解析】
根据勾股定理可以得出AB的长度,从而得知CD的长度,再根据旋转的性质可知BC=B1C,从而可以得出答案.【详解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵点D为AB的中点,∴,∵将△ACB绕点C按顺时针方向旋转,当CB经过点D时得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案为:2.【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB的长是解题的关键.14、2【解析】试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考点:1折叠问题;2勾股定理;1相似三角形.15、1【解析】
先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积.【详解】:∵第1个正方形的面积为:1+4×12×2×1=5=51;
第2个正方形的面积为:5+4×12×25×5=25=52;
第3个正方形的面积为:25+4×12×225×25=125=53【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积.16、向南走10km【解析】
分析:与北相反的方向是南,由题意,负数表示向北走,则正数就表示向南走,据此得出结论.详解:∵向北走5km记作﹣5km,∴+10km表示向南走10km.故答案是:向南走10km.点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示.17、.【解析】
解:连接CE,∵根据图形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案为.考点:勾股定理;三角形的面积;锐角三角函数的定义.18、【解析】
根据点E、F在边AB、AC上,可知当点E与点B重合时,CP有最小值,当点F与点C重合时CP有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E与点B重合时,CP的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、“石鼓阁”的高AB的长度为56m.【解析】
根据题意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根据反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,根据相似三角形的性质可得=,再根据∠AHB=∠GHF,可证△ABH∽△GFH,同理得=,代入数值计算即可得出结论.【详解】由题意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,由反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,∴=,即=①,∵∠AHB=∠GHF,∴△ABH∽△GFH,∴=,即=②,联立①②,解得:AB=56,答:“石鼓阁”的高AB的长度为56m.【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.20、(1)50,108°,补图见解析;(2)9.6;(3).【解析】
(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=.【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.21、(1)证明参见解析;(2)半径长为,=.【解析】
(1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.【详解】解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴.设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.22、(1)见解析;(2)△ADF的面积是.【解析】试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC=,求出OM,根据cos∠BAC=,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.试题解析:(1)证明:连接OD,CD,∵AC是⊙O的直径,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD过圆心O,∴ED为⊙O的切线.(2)过O作OM⊥AB于M,过F作FN⊥AB于N,则OM∥FN,∠OMN=90°,∵OE∥AB,∴四边形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂径定理得:AD=2AM=,即△ADF的面积是AD×FN=××=.答:△ADF的面积是.【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.23、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】
(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.24、(1)见解析;(2)【解析】
(1)连接,,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得与相切;(2)作于点.设,则,.根据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术入股权益分配协议
- 跨国工程项目贷款合同示范文本
- 商品鸡苗购销协议书2024年
- 第5章-核反应堆流体力学-核工程概论课件
- 商用场所装修合同
- 加工贸易协议范本
- 大数据分析技术合作合同样本
- 授权额度借款合同范本
- 餐厅转让合同书
- 应届毕业生就业实习合同样本
- 小学道德与法治-119的警示教学课件设计
- 浸塑围网施工方案
- 《骄人祖先 灿烂文化》 单元作业设计
- 校园广场景观设计教学课件
- 关于河源地区高中物理开展“大单元教学设计”的调查问卷分析报告
- 第十三讲 全面贯彻落实总体国家安全观PPT习概论2023优化版教学课件
- 上海市房屋租赁合同
- 五年级【美术(人美版)】动态之美(一)-课件
- 偏瘫病人的体位转移
- 全草类中药的鉴定
- 光伏储能式一体化充电站项目可行性研究报告
评论
0/150
提交评论