版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林大附属中学九年级数学第一学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.用配方法解方程时,原方程可变形为()A. B. C. D.2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次3.下列事件中,属于必然事件的是()A.小明买彩票中奖 B.投掷一枚质地均匀的骰子,掷得的点数是奇数C.等腰三角形的两个底角相等 D.是实数,4.如图,在ABCD中,∠DAB=10°,AB=8,AD=1.⊙O分别切边AB,AD于点E,F,且圆心O好落在DE上.现将⊙O沿AB方向滚动到与BC边相切(点O在ABCD的内部),则圆心O移动的路径长为()A.2 B.4 C.5﹣ D.8﹣25.如图,为的直径,和分别是半圆上的三等分点,连接,若,则图中阴影部分的面积为()A. B. C. D.6.某商务酒店客房有间供客户居住.当每间房每天定价为元时,酒店会住满;当每间房每天的定价每增加元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出元的费用.当房价定为多少元时,酒店当天的利润为元?设房价定为元,根据题意,所列方程是()A. B.C. D.7.已知二次函数的图象经过点,当自变量的值为时,函数的值为()A. B. C. D.8.将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是()A. B. C. D.9.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A. B. C. D.10.在中,最简二次根式的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机柚取100件进行检测,检测出次品5件,由此估计这一批产品中的次品件数是_____.12.如图,,与交于点,已知,,,那么线段的长为__________.13.如图,在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则=_______.14.如图,边长为的正六边形在足够长的桌面上滚动(没有滑动)一周,则它的中心点所经过的路径长为______.15.如图,正方形ABOC与正方形EFCD的边OC、CD均在x轴上,点F在AC边上,反比例函数的图象经过点A、E,且,则________.16.若二次函数的图象与x轴只有一个公共点,则实数n=______.17.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.18.若,则=___________.三、解答题(共66分)19.(10分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是_______元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为5元的人数所占的圆心角度数是_____度;(3)一周内的零花钱数额为20元的有5人,其中有2名是女生,3名是男生,现从这5人中选2名进行个别教育指导,请用画树状图或列表法求出刚好选中2名是一男一女的概率.20.(6分)如图,⊙O是△ABC的外接圆,AB是直径,OD⊥AC,垂足为D点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PB,PC,且满足∠PCA=∠ABC(1)求证:PA=PC;(2)求证:PA是⊙O的切线;(3)若BC=8,,求DE的长.21.(6分)如图,是半圆上的三等分点,直径,连接,垂足为交于点,求的度数和涂色部分的面积.22.(8分)我县从2017年底开始落实国家的脱贫攻坚任务,准备加大基础设施的投入力度,某乡镇从2017年底的100万到2019年底的196万元,用于基础建设以落实国家大政方针.设平均每年所投入的增长率相同.(1)求2017年底至2019年底该乡镇的年平均基础设施投入增长率?(2)按照这一投入力度,预计2020年该乡镇将投入多少万元?23.(8分)如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.24.(8分)已知抛物线经过点(1,0),(0,3).(1)求该抛物线的函数表达式;(2)将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.25.(10分)已知关于的一元二次方程有两个不相等的实数根(1)求的取值范围;(2)若为正整数,且该方程的根都是整数,求的值.26.(10分)树AB和木杆CD在同一时刻的投影如图所示,木杆CD高2m,影子DE长3m;若树的影子BE长7m,则树AB高多少m?
参考答案一、选择题(每小题3分,共30分)1、B【分析】先将二次项系数化为1,将常数项移动到方程的右边,方程两边同时加上一次项系数的一半的平方,结合完全平方公式进行化简即可解题.【详解】故选:B.【点睛】本题考查配方法解一元二次方程,其中涉及完全平方公式,是重要考点,难度较易,掌握相关知识是解题关键.2、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.3、C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【详解】解:A.小明买彩票中奖,是随机事件;B.投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C.等腰三角形的两个底角相等,是必然事件;D.是实数,,是不可能事件;故选C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、B【分析】如图所示,⊙O滚过的路程即线段EN的长度.EN=AB-AE-BN,所以只需求AE、BN的长度即可.分别根据AE和BN所在的直角三角形利用三角函数进行计算即可.【详解】解:连接OE,OA、BO.∵AB,AD分别与⊙O相切于点E、F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°,在Rt△ADE中,AD=1,∠ADE=30°,∴AE=AD=3,∴OE=AE=,∵AD∥BC,∠DAB=10°,∴∠ABC=120°.设当运动停止时,⊙O′与BC,AB分别相切于点M,N,连接O′N,O′M.同理可得,∠BO′N为30°,且O′N为,∴BN=O′N•tan30°=1cm,EN=AB﹣AE﹣BN=8﹣3﹣1=2.∴⊙O滚过的路程为2.故选:B.【点睛】本题考查了切线的性质,平行四边形的性质及解直角三角形等知识.关键是计算出AE和BN的长度.5、B【分析】阴影的面积等于半圆的面积减去△ABC和△ABD的面积再加上△ABE的面积,因为△ABE的面积是△ABC的面积和△ABD的面积重叠部分被减去两次,所以需要再加上△ABE的面积,然后分别计算出即可.【详解】设相交于点和分别是半圆上的三等分点,为⊙O的直径..,如图,连接,则,故选.【点睛】此题主要考查了半圆的面积、圆的相关性质及在直角三角形中,30°角所对应的边等于斜边的一半,关键记得加上△ABE的面积是解题的关键.6、D【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【详解】设房价定为x元,根据题意,得故选:D.【点睛】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.7、B【分析】把点代入,解得的值,得出函数解析式,再把=3即可得到的值.【详解】把代入,得,解得=把=3,代入==-4故选B.【点睛】本题考查了二次函数的解析式,直接将坐标代入法是解题的关键.8、B【分析】把配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.9、A【分析】如图,连接DP,BD,作DH⊥BC于H.当D、P、M共线时,P′B+P′M=DM的值最小,利用勾股定理求出DM,再利用平行线的性质即可解决问题.【详解】如图,连接DP,BD,作DH⊥BC于H.∵四边形ABCD是菱形,∴AC⊥BD,B、D关于AC对称,∴PB+PM=PD+PM,∴当D、P、M共线时,P′B+P′M=DM的值最小,∵CM=BC=2,∵∠ABC=120°,∴∠DBC=∠ABD=60°,∴△DBC是等边三角形,∵BC=6,∴CM=2,HM=1,DH=,在Rt△DMH中,DM===,∵CM∥AD,∴==,∴P′M=DM=.故选A.【点睛】本题考查轴对称﹣最短问题、菱形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.10、A【分析】根据最简二次根式的条件进行分析解答即可.【详解】解:不是最简二次根式,是最简二次根式.故选A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题(每小题3分,共24分)11、500【分析】次品率,根据抽取的样本数求得该批产品的次品率之后再乘以产品总数即可求解.【详解】解:,(件)【点睛】本题主要考查了数据样本与频率问题,亦可根据比例求解.12、【分析】根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到OA:OD=AB:CD,然后利用比例性质计算OA的长.【详解】∵AB∥CD,∴OA:OD=AB:CD,即OA:2=4:3,∴OA=.故答案为.【点睛】本题考查了平行线分线段成比例:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.13、.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据,得出CG与DE的倍数关系,并根据进行计算即可.【详解】延长EF和BC交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E∴∴∴直角三角形ABE中,又∵∠BED的角平分线EF与DC交于点F∴∵∴∴∴由,,可得∴设,,则∴∴解得∴故答案为:.【点睛】本题考查了矩形与角平分线的综合问题,掌握等腰直角三角形的性质和相似三角形的性质以及判定是解题的关键.14、【分析】首先求得从B到B´时,圆心O的运动路线与点F运动的路线相同,即是的长,又由正六边形的内角为120°,求得所对
的圆心角为60°,根据弧长公式计算即可.【详解】解:∵正六边形的内角为120°,∴∠BAF=120°,∴∠FAF´=60°,∴∴正六边形在桌子上滚动(没有滑动)一周,则它的中心O点所经过的路径长为:
故答案为:
【点睛】本题考查的是正六边形的性质及正六边形中心的运动轨迹长,找到其运动轨迹是解决本题的关键.15、6【分析】设正方形ABOC与正方形EFCD的边长分别为m,n,根据S△AOE=S梯形ACDE+S△AOC-S△ADE,可求出m2=6,然后根据反比例函数比例系数k的几何意义即可求解.【详解】设正方形ABOC与正方形EFCD的边长分别为m,n,则OD=m+n,∵S△AOE=S梯形ACDE+S△AOC-S△ADE,∴,∴m2=6,∵点A在反比例函数的图象上,∴k=m2=6,故答案为:6.【点睛】本题考查了正方形的性质,割补法求图形的面积,反比例函数比例系数k的几何意义,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数.16、1.【解析】】解:y=x2﹣1x+n中,a=1,b=﹣1,c=n,b2﹣1ac=16﹣1n=0,解得n=1.故答案为1.17、2α【解析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋转角的大小为2α.18、【分析】把所求比例形式进行变形,然后整体代入求值即可.【详解】,,;故答案为.【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.三、解答题(共66分)19、(1)12;(2)72;(3).【分析】(1)根据加权平均数的计算公式计算即可;(2)用样本中零花钱数额为5元的人数所占比例乘以360°即可;(3)通过列表,求出所有情况及符合题意的情况有多少种,根据概率的计算公式得出答案即可.【详解】解:(1)平均数是(元);故答案为:12;(2)一周内的零花钱数额为5元的人数所占的圆心角度数为:;故答案为:72;(3)表格如下:从这5人中选2名共20种情况,刚好选中2名是一男一女有12种情况,所以刚好选中2名是一男一女的概率为,故答案为.【点睛】本题考查加权平均数、统计图表的应用以及树状图或列表法求概率,难度不大,解题的关键是将相关概念应用到实际问题中,解决问题.20、(1)详见解析;(2)详见解析;(3)DE=1.【分析】(1)根据垂径定理可得AD=CD,得PD是AC的垂直平分线,可判断出PA=PC;(2)由PC=PA得出∠PAC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出结论;(2)根据AB和DF的比设AB=3a,DF=2a,先根据三角形中位线可得OD=4,从而得结论.【详解】(1)证明∵OD⊥AC,∴AD=CD,∴PD是AC的垂直平分线,∴PA=PC,(2)证明:由(1)知:PA=PC,∴∠PAC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠PAC=90°,即AB⊥PA,∴PA是⊙O的切线;(3)解:∵AD=CD,OA=OB,∴OD∥BC,OD=BC==4,∵,设AB=3a,DF=2a,∵AB=EF,∴DE=3a﹣2a=a,∴OD=4=﹣a,a=1,∴DE=1.【点睛】本题考查的是圆的综合,难度适中,需要熟练掌握线段中垂线的性质、圆的切线的求法以及三角形中位线的相关性质.21、,.【分析】连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到∠AFE=60°;再推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到涂色部分的面积.【详解】连接,是半圆上的三等分点,则,,∵,∴,;,∴是等边三角形,,所以.【点睛】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.22、(1)年平均增长率为40%;(2)预计2020年该乡镇将投入274.4万元.【分析】(1)设年平均增长率为x,根据题意列出方程,解方程即可得出答案;(2)用2019年的196万元×(1+年增长率)即可得出答案.【详解】(1)设年平均增长率为x,由题意得解得:=40%,(舍)∴年平均增长率为40%;(2)196(1+40%)=274.4(万元)答:2017年底至2019年底该乡镇的年平均基础设施投入增长为40%,预计2020年该乡镇将投入274.4万元.【点睛】本题主要考查一元二次方程的应用,读懂题意列出方程是解题的关键.23、(1)证明见解析;(2)【解析】分析:(1)根据圆内接四边形的性质得到∠DCE=∠BAD,根据圆周角定理得到∠DCE=∠BAD,证明即可;(2)证明△DCE∽△ACD,根据相似三角形的性质列出比例式,计算即可.详解:(1)证明:∵四边形ABCD是⊙O内接四边形,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学空气的存在(30课件)
- 8《红楼春趣》核心素养分层学习任务单-2022-2023学年五年级语文下册新课标(部编版)
- 防城港市重点中学2023-2024学年高三下学期考前模拟数学试题
- 2024年赣州客运资格证考试内客
- 2024年荷泽客运从业资格证
- 2024年宜宾c1道路客运输从业资格证怎么考
- 2024年南昌客运从业资格证要考几门课
- 2024年陕西2024年客运从业资格证模拟考试题答案
- 2024年南宁客运从业资格证实际操作考试技巧
- 吉首大学《国际贸易实务B》2021-2022学年第一学期期末试卷
- 租地种香蕉合同
- 统编版 七年级上册(2024修订) 第四单元 13 纪念白求恩 课件
- 副总经理招聘面试题及回答建议(某大型国企)
- 20世纪时尚流行文化智慧树知到期末考试答案章节答案2024年浙江理工大学
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- (高清版)JTGT 3331-04-2023 多年冻土地区公路设计与施工技术规范
- 增值服务具体方案怎么写范文
- 企业评标专家推荐表
- 设备故障报修维修记录单
- 老年性便秘(中医老年病学)PPT参考课件
- 《汉代的服饰文化》PPT课件.ppt
评论
0/150
提交评论