山东省青岛市第九中学2025届数学九上期末联考模拟试题含解析_第1页
山东省青岛市第九中学2025届数学九上期末联考模拟试题含解析_第2页
山东省青岛市第九中学2025届数学九上期末联考模拟试题含解析_第3页
山东省青岛市第九中学2025届数学九上期末联考模拟试题含解析_第4页
山东省青岛市第九中学2025届数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛市第九中学2025届数学九上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tanD的值为()A. B. C. D.2.如图,在平行四边形ABCD中,点E在DC边上,连接AE,交BD于点F,若DE:EC=2:1,则△DEF的面积与△BAF的面积之比为()A.1:4 B.4:9 C.9:4 D.2:33.如图,两点在反比例函数的图象上,两点在反比例函数的图象上,轴于点,轴于点,,则的值是()A.2 B.3 C.4 D.64.一块△ABC空地栽种花草,∠A=150°,AB=20m,AC=30m,则这块空地可栽种花草的面积为()m2A.450 B.300 C.225 D.1505.如图的的网格图,A、B、C、D、O都在格点上,点O是()A.的外心 B.的外心 C.的内心 D.的内心6.方程x2﹣9=0的解是()A.3 B.±3 C.4.5 D.±4.57.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且.图象上有一点在轴下方,则下列判断正确的是()A. B. C. D.8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10009.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A. B.C. D.10.如右图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在格点上,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.如果∠BAC=30°,∠DAE=105°,则y与x之间的函数关系式为________________.12.已知点与点,两点都在反比例函数的图象上,且<<,那么______________.(填“>”,“=”,“<”)13.在平面直角坐标系中,将抛物线向左平移2个单位后顶点坐标为_______.14.在平面直角坐标系中,正方形ABCD的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,延长交轴于点,作正方形,…按这样的规律进行下去,第个正方形的面积为_____________.15.若点与关于原点对称,则的值是___________.16.如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.17.现有6张正面分别标有数字的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根的概率为____.18.如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣1,1),B(﹣4,1),C(﹣1,3).(1)作出△ABC关于y轴对称的△A1B1C1,并写出C1的坐标;(1)画出△ABC绕C点顺时针旋转90°后得到的△A1B1C1.20.(6分)对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=1时,代数式等于1;当x=1时,代数式等于1,我们就称1和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=1.(1)代数式x2﹣2的不变值是,A=.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=1,求b的值.21.(6分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为多少步.22.(8分)某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式+36,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示:(1)试确定、的值;(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;(3)几月份出售这种水产品每千克利润最大?最大利润是多少?23.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.24.(8分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)如果果园既要让橙子的总产量达到60375个,又要确保每一棵橙子树接受到的阳光照射尽量少受影响,那么应该多种多少棵橙子树?(2)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?25.(10分)如图,抛物线与轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长.26.(10分)如图,在中,D、E分别为BC、AC上的点.若,AB=8cm,求DE的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故选:D.【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、B【分析】先判断△DEF∽△BAF,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∴△DEF∽△BAF,∴.又∵DE:EC=2:1,∴,∴.故选B.【点睛】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.3、D【分析】连接OA、OB、OC、OD,由反比例函数的性质得到,,结合两式即可得到答案.【详解】连接OA、OB、OC、OD,由题意得,,∵,∴,∵,∴,∴,∵AC=3,BD=2,EF=5,∴解得OE=2,∴,故选:D.【点睛】此题考查反比例函数图象上点的坐标特点,比例系数与三角形面积的关系,掌握反比例函数解析式中k的几何意义是解题的关键.4、D【分析】过点B作BE⊥AC,根据含30度角的直角三角形性质可求得BE,再根据三角形的面积公式求出答案.【详解】过点B作BE⊥AC,交CA延长线于E,则∠E=90°,

∵,

∴,

∵在中,,,

∴,

∴这块空地可栽种花草的面积为.故选:D【点睛】本题考查了含30度角的直角三角形性质和三角形的面积公式,是基础知识比较简单.5、B【分析】连接OA、OB、OC、OD,设网格的边长为1,利用勾股定理分别求出OA、OB、OC、OD的长,根据O点与三角形的顶点的距离即可得答案.【详解】连接OA、OB、OC、OD,设网格的边长为1,∴OA==,OB==,OC==,OD==,∵OA=OB=OC=,∴O为△ABC的外心,故选B.【点睛】本题考查勾股定理的应用,熟练掌握三角形的外心和内心的定义是解题关键.6、B【解析】根据直接开方法即可求出答案.【详解】解:∵x2﹣9=0,∴x=±3,故选:B.【点睛】本题考察了直接开方法解方程,注意开方时有两个根,别丢根7、D【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.8、D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故选D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.9、D【解析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知其定义.10、A【分析】过作于,首先根据勾股定理求出,然后在中即可求出的值.【详解】如图,过作于,则,=1..故选:A.【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线构造直角三角形是解题的关键.二、填空题(每小题3分,共24分)11、【解析】∵∠BAC=30°,AB=AC,∴∠ACB=∠ABC=,∴∠ACE=∠ABD=180°-75°=105°,∵∠DAE=105°,∠BAC=30°,∴∠DAB+∠CAE=105°-30°=75°,又∵∠DAB+∠ADB=∠ABC=75°,∴∠ADB=∠CAE.∴△ADB∽△EAC,∴,即,∴.故答案为.12、<【分析】根据反比例函数图象增减性解答即可.【详解】∵反比例函数的图象在每一个象限内y随x的增大而增大∴图象上点与点,且0<<∴<故本题答案为:<.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键.13、【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】解:y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).所以,抛物线y=(x+5)(x-3)向左平移2个单位长度后的顶点坐标为(-1-2,-16),即(-3,-16),故答案为:(-3,-16)【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.14、【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,证△DOA∽△ABA1,得出,求出AB,BA1,求出边长A1C=,求出面积即可;求出第2个正方形的边长是,求出面积,再求出第3个正方形的面积;依此类推得出第n个正方形的边长,求出面积即可.【详解】∵四边形ABCD是正方形,

∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,

∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,

∴∠ADO=∠BAA1,

∵∠DOA=∠ABA1,

∴△DOA∽△ABA1,

∴,

∵AB=AD=∴BA1=∴第2个正方形A1B1C1C的边长A1C=A1B+BC=,面积是;同理第3个正方形的边长是面积是;第4个正方形的边长是,面积是…,

第n个正方形的边长是,面积是故答案为:【点睛】本题考查了正方形的性质,相似三角形的性质和判定,勾股定理的应用,解此题的关键是根据计算的结果得出规律,题目比较好,但是一道比较容易出错的题目15、1【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反.【详解】∵点与关于原点对称∴故填:1.【点睛】本题主要考查了关于原点对称的点的坐标特点,熟练掌握点的变化规律是关键.16、1.【分析】根据关系式,令h=0即可求得t的值为飞行的时间.【详解】解:依题意,令得:∴得:解得:(舍去)或∴即小球从飞出到落地所用的时间为故答案为1.【点睛】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单.17、【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,

∴4-4(a-2)≥0,

∴a≤1,

∴a=-1,0,1,2,1.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.18、①③④【分析】根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定①;令x=0,求出y2的值,比较判定②;观察图象,判定③;令y=3,求出A、B、C的横坐标,然后求出AB、AC的长,判定④.【详解】∵抛物线y1=a(x+2)2+m与抛物线y2=(x﹣3)2+n的对称轴分别为x=-2,x=3,∴两条抛物线的对称轴距离为5,故①正确;∵抛物线y2=(x﹣3)2+n交于点A(1,3),∴2+n=3,即n=1;∴y2=(x﹣3)2+1,把x=0代入y2=(x﹣3)2+1得,y=≠5,②错误;由图象可知,当x>3时,y1>y2,∴x>3时,y1﹣y2>0,③正确;∵抛物线y1=a(x+2)2+m过原点和点A(1,3),∴,解得,∴.令y1=3,则,解得x1=-5,x2=1,∴AB=1-(-5)=6,∴A(1,3),B(-5,3);令y2=3,则(x﹣3)2+1=3,解得x1=5,x2=1,∴C(5,3),∴AC=5-1=4,∴BC=10,∴y轴是线段BC的中垂线,故④正确.故答案为①③④.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.三、解答题(共66分)19、(1)见解析,(1,3);(1)见解析【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(1)分别作出点A、B绕C点顺时针旋转90°后得到的对应点,再首尾顺次连接即可得.【详解】解:(1)如图所示,△A1B1C1即为所求,C1的坐标为(1,3);(1)如图所示,△A1B1C1即为所求.【点睛】本题主要考查作图-旋转变换和轴对称变换,解题的关键是掌握旋转变换和轴对称变换的定义与性质,并据此得出变换后的对应点.20、(3)﹣3和2;2;(2)见解析;(2)﹣2或3【分析】(3)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系数结合根的判别式可得出方程2x2﹣x+3=3没有实数根,进而可得出代数式2x2+3没有不变值;(2)由A=3可得出方程x2﹣(b+3)x+3=3有两个相等的实数根,进而可得出△=3,解之即可得出结论.【详解】解:(3)依题意,得:x2﹣2=x,即x2﹣x﹣2=3,解得:x3=﹣3,x2=2,∴A=2﹣(﹣3)=2.故答案为﹣3和2;2.(2)依题意,得:2x2+3=x,∴2x2﹣x+3=3,∵△=(﹣3)2﹣4×2×3=﹣33<3,∴该方程无解,即代数式2x2+3没有不变值.(2)依题意,得:方程x2﹣bx+3=x即x2﹣(b+3)x+3=3有两个相等的实数根,∴△=[﹣(b+3)]2﹣4×3×3=3,∴b3=﹣2,b2=3.答:b的值为﹣2或3.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.21、【分析】根据平行证出△CDK∽△DAH,利用相似比即可得出答案.【详解】解:DH=100,DK=100,AH=15,∵AH∥DK,∴∠CDK=∠A,而∠CKD=∠AHD,∴△CDK∽△DAH,∴,即,∴CK=答:KC的长为步.【点睛】本题主要考查的是相似三角形的应用,难度适中,解题关键是找出相似三角形.22、(1),;(2);(3)6月份出售这种水产品每千克利润最大,最大利润是每千克11元.【分析】(1)把图中的已知坐标代入解析式,解方程组求出b,c即可;(2)由题意得,化简函数关系式即可;(3)已知y与x的函数关系式,用配方法化为顶点式,根据抛物线的性质即可求出最大值.【详解】解:(1)根据图象,将和分别代入解析式得:解得:,;(2)由题意得:,∴(3)将化为顶点式得:,∵,∴抛物线开口向下,∴当时,二次函数取得最大值,此时y=11,所以6月份出售这种水产品每千克利润最大,最大利润是每千克11元。【点睛】本题考查学生利用二次函数解决实际问题的能力.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.23、详见解析.【解析】由切线的性质可知∠ODE=90°,证明OD∥AE即可解决问题.【详解】连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°.∵OA=OD,∴∠OAD=∠ODA.∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点睛】本题考查了切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)应该多种5棵橙子树;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论