![2025届广东省汕尾市海丰县数学九上期末调研试题含解析_第1页](http://file4.renrendoc.com/view2/M00/31/2D/wKhkFmacWQ-APQLqAAISCRyWGBE902.jpg)
![2025届广东省汕尾市海丰县数学九上期末调研试题含解析_第2页](http://file4.renrendoc.com/view2/M00/31/2D/wKhkFmacWQ-APQLqAAISCRyWGBE9022.jpg)
![2025届广东省汕尾市海丰县数学九上期末调研试题含解析_第3页](http://file4.renrendoc.com/view2/M00/31/2D/wKhkFmacWQ-APQLqAAISCRyWGBE9023.jpg)
![2025届广东省汕尾市海丰县数学九上期末调研试题含解析_第4页](http://file4.renrendoc.com/view2/M00/31/2D/wKhkFmacWQ-APQLqAAISCRyWGBE9024.jpg)
![2025届广东省汕尾市海丰县数学九上期末调研试题含解析_第5页](http://file4.renrendoc.com/view2/M00/31/2D/wKhkFmacWQ-APQLqAAISCRyWGBE9025.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省汕尾市海丰县数学九上期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=54002.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.3.下列事件中是必然发生的事件是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.射击运动员射击一次,命中十环C.在地球上,抛出的篮球会下落D.明天会下雨4.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4 C.6 D.45.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②点F是GE的中点;③;④,其中正确的结论个数是()A.4个 B.3个 C.2个 D.1个6..以3、4为两边长的三角形的第三边长是方程x2-13x+40=0的根,则这个三角形的周长为()A.15或12 B.12 C.15 D.以上都不对7.下列事件中是必然事件是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上8.如图已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是60°,则∠C的度数是()A.25° B.40° C.30° D.50°9.的相反数是()A. B. C. D.10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①② B.①②③ C.①②④ D.②③④11.如图,所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是()A.第一象限 B.第一、三象限 C.第二、四象限 D.第一、四象限12.在下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形 B.圆 C.等腰梯形 D.直角三角形二、填空题(每题4分,共24分)13.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=______度.14.对于两个不相等的实数a、b,我们规定max{a、b}表示a、b中较大的数,如max{1,1}=1.那么方程max{1x,x﹣1}=x1﹣4的解为.15.已知x=-1是一元二次方程x2+mx+1=0的一个根,那么m的值是_________.16.如图,在正方形ABCD中,点E在BC边上,且BC=3BE,AF平分∠DAE,交DC于点F,若AB=3,则点F到AE的距离为___________.17.如图所示,△ABC是⊙O的内接三角形,若∠BAC与∠BOC互补,则∠BOC的度数为_____.18.如图,在平面直角坐标系中有两点和,以原点为位似中心,相似比为,把线段缩短为线段,其中点与点对应,点与点对应,且在y轴右侧,则点的坐标为________.三、解答题(共78分)19.(8分)速滑运动受到许多年轻人的喜爱。如图,四边形是某速滑场馆建造的滑台,已知,滑台的高为米,且坡面的坡度为.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为.(1)求新坡面的坡角及的长;(2)原坡面底部的正前方米处是护墙,为保证安全,体育管理部门规定,坡面底部至少距护墙米。请问新的设计方案能否通过,试说明理由(参考数据:)20.(8分)在平面直角坐标系中,抛物线经过点,.(1)求这条抛物线所对应的函数表达式.(2)求随的增大而减小时的取值范围.21.(8分)如图,抛物线过点和,点为线段上一个动点(点与点不重合),过点作垂直于轴的直线与直线和抛物线分别交于点.(1)求此抛物线的解析式;(2)若点是的中点,则求点的坐标;(3)若以点为顶点的三角形与相似,请直接写出点的坐标.22.(10分)已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围.23.(10分)已知关于的方程①求证:方程有两个不相等的实数根.②若方程的一个根是求另一个根及的值.24.(10分)某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.25.(12分)(1)已知,求的值;(2)已知直线分别截直线于点,截直线于点,且,,求的长.26.如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于点A、B.点C的坐标是(﹣1,0),抛物线y=ax2+bx﹣2经过A、C两点且交y轴于点D.点P为x轴上一点,过点P作x轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为m(m≠0).(1)求点A的坐标.(2)求抛物线的表达式.(3)当以B、D、Q,M为顶点的四边形是平行四边形时,求m的值.
参考答案一、选择题(每题4分,共48分)1、B【详解】根据题意可得整副画的长为(80+2x)cm,宽为(50+2x)cm,则根据长方形的面积公式可得:(80+2x)(50+2x)=1.故应选:B考点:一元二次方程的应用2、A【分析】画树状图(用、、分别表示“图书馆、博物馆、科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】画树状图为:(用分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率.故选A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.3、C【解析】试题分析:A.抛两枚均匀的硬币,硬币落地后,都是正面朝上是随机事件,故A错误;B.射击运动员射击一次,命中十环是随机事件,故B错误;C.在地球上,抛出的篮球会下落是必然事件,故C正确;D.明天会下雨是随机事件,故D错误;故选C.考点:随机事件.4、B【分析】由已知条件可得,可得出,可求出AC的长.【详解】解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.5、C【分析】易得AG∥BC,进而可得△AFG∽△CFB,然后根据相似三角形的性质以及BA=BC即可判断①;根据余角的性质可得∠ABG=∠BCD,然后利用“角边角”可证明△ABG≌△BCD,可得AG=BD,于是有AG=BC,由①根据相似三角形的性质可得,进而可得FG=FB,然后根据FE≠BE即可判断②;根据相似三角形的性质可得,再根据等腰直角三角形的性质可得AC=AB,然后整理即可判断③;过点F作FM⊥AB于M,如图,根据相似三角形的性质和三角形的面积整理即可判断④.【详解】解:在Rt△ABC中,∵∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,又∵BA=BC,∠BAG=∠CBD=90°,∴△ABG≌和△BCD(ASA),∴AG=BD,∵点D是AB的中点,∴BD=AB,∴AG=BC,∵△AFG∽△CFB,∴,∴FG=FB,∵FE≠BE,∴点F是GE的中点不成立,故②错误;∵△AFG∽△CFB,∴,∴AF=AC,∵AC=AB,∴,故③正确;过点F作FM⊥AB于M,如图,则FM∥CB,∴△AFM∽△ACB,∴,∵,∴,故④错误.综上所述,正确的结论有①③共2个.故选:C.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质和等腰直角三角形的性质等知识,属于常考题型,熟练掌握全等三角形和相似三角形的判定和性质是解题的关键.6、B【解析】试题分析:将方程进行因式分解可得:(x-5)(x-8)=0,解得:x=5或x=8,根据三角形三边关系可得:这个三角形的第三边长为5,则周长为:3+4+5=1.考点:(1)解一元二次方程;(2)三角形三边关系7、C【解析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C.8、C【分析】利用平行线的性质求出∠AOD,然后根据圆周角定理可得答案.【详解】解:∵DE∥OA,∴∠AOD=∠D=60°,∴∠C=∠AOD=30°,故选:C.【点睛】本题考查圆周角定理,平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9、D【详解】考查相反数的概念及应用,只有符号不同的两个数,叫做互为相反数.的相反数是.故选D.10、B【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,,,,则,故①正确;∵该函数的对称轴是,∴,得,故②正确;∵,,∴若(﹣5,y1),(3,y2)是抛物线上两点,则,故③正确;∵该函数的对称轴是,过点(﹣3,0),∴和时的函数值相等,都大于0,∴,故④错误;故正确是①②③,故选:B.【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11、C【分析】根据输入程序,求得y与x之间的函数关系是y=-,由其性质判断所在的象限.【详解】解:x的倒数乘以-5为-,即y=-,则函数过第二、四象限,故选C.【点睛】对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.12、B【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、圆是轴对称图形,也是中心对称图形,故本选项正确;C、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误;D、直角三角形不一定是轴对称图形,也不是中心对称图形,故本选项错误;故选B.【点睛】本题考查了轴对称图形与中心对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,识别中心对称图形的关键是寻找对称中心,旋转180°后与原图重合.二、填空题(每题4分,共24分)13、1【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵△ABC绕点A逆时针旋转得到△AB′C′,∴∠C′AB′=∠CAB,AC′=AC,∵∠BAC'=80°,∴∠C′AB′=∠CAB=C′AB=40°,∴∠ACC′=70°,∴∠B=∠ACC′﹣∠CAB=1°,故答案为:1.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的外角的性质,正确的识别图形是解题的关键.14、【分析】直接分类讨论得出x的取值范围,进而解方程得出答案.【详解】解:当1x>x﹣1时,故x>﹣1,则1x=x1﹣4,故x1﹣1x﹣4=0,(x﹣1)1=5,解得:x1=1+,x1=1﹣;当1x<x﹣1时,故x<﹣1,则x﹣1=x1﹣4,故x1﹣x﹣1=0,解得:x3=1(不合题意舍去),x4=﹣1(不合题意舍去),综上所述:方程max{1x,x﹣1}=x1﹣4的解为:x1=1+,x1=1﹣.故答案为:x1=1+,x1=1﹣.【点睛】考核知识点:一元二次方程.理解规则定义是关键.15、1【解析】试题分析:将x=-1代入方程可得:1-m+1=0,解得:m=1.考点:一元二次方程16、【分析】延长AE交DC延长线于M,关键相似求出CM的长,求出AM长,根据角平分线性质得出比例式,代入求出即可.【详解】延长AE交DC延长线于M,
∵四边形ABCD是正方形,BC=3BE,BC=3,
∴AD=DC=BC=AB=3,∠D=90°,BE=1,CE=2,AB∥DC,
∴△ABE∽△MCE,
∴,
∴CM=2AB=6,
即DM=3+6=9,
由勾股定理得:,
∵AF平分∠DAE,
∴,
∴,
解得:,
∵AF平分∠DAE,∠D=90°,
∴点F到AE的距离=,
故答案为:.【点睛】本题考查了角平分线性质,勾股定理,相似三角形的性质和判定,正方形的性质等知识点,能正确作出辅助线是解此题的关键.17、120°【分析】利用圆周角定理得到∠BAC=∠BOC,再利用∠BAC+∠BOC=180°可计算出∠BOC的度数.【详解】解:∵∠BAC和∠BOC所对的弧都是,∴∠BAC=∠BOC∵∠BAC+∠BOC=180°,∴∠BOC+∠BOC=180°,∴∠BOC=120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.18、【分析】根据位似变换的性质计算即可.【详解】∵以原点O为位似中心,相似比为,把线段AB缩短为线段CD,B(6,3),∴点D的坐标为:,即,故答案为:.【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.三、解答题(共78分)19、(1)新坡面的坡角为,米;(2)新的设计方案不能通过,理由详见解析.【分析】(1)过点C作CH⊥BG,根据坡度的概念、正确的定义求出新坡面AC的坡角;(2)根据坡度的定义分别求出AH、BH,求出EA,根据题意进行比较,得到答案.【详解】解:如图,过点作垂足为(1)新坡面的坡度为,即新坡面的坡角为米;(2)新的设计方案不能通过.理由如下:坡面的坡度为,,新的设计方案不能通过.【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.20、(1),(2)随的增大而减小时.【解析】(1)把,代入解析式,解方程组求出a、b的值即可;(2)根据(1)中所得解析式可得对称轴,a>0,在对称轴左侧y随的增大而减小根据二次函数的性质即可得答案.【详解】(1)∵抛物线经过点,.∴解得∴这条抛物线所对应的函数表达式为.(2)∵抛物线的对称轴为直线,∵,∴图象开口向上,∴y随的增大而减小时x<1.【点睛】本题考查待定系数法确定二次函数解析式及二次函数的性质,a>0,开口向上,在对称轴左侧y随的增大而减小,a<0,开口向下,在对称轴右侧y随的增大而减小,熟练掌握二次函数的图像和性质是解题关键.21、(1);(2);(3)P(,)或P(,)【分析】(1)把A点坐标和B点坐标代入,解方程组即可;
(2)用m可表示出P、N的坐标,由题意可知有P为线段MN的中点,可得到关于m的方程,可求得m的值,即可求得点的坐标;(3)用m可表示出NP,PM,AM,分当∠BNP=90°时和当∠NBP=90°时两种情况讨论即可.【详解】解:(1)抛物线经过点解得∴(2)由题意易得,直线的解析式为由,设,则,点是的中点,即∴,解得(舍)∴(3).由,设,∴,,AM=3−m,
∵△BPN和△APM相似,且∠BPN=∠APM,
∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,
当∠BNP=90°时,则有BN⊥MN,
∴N点的纵坐标为2,
∴=2,
解得m=0(舍去)或m=,
∴P(,);
当∠NBP=90°时,过点N作NC⊥y轴于点C,
则∠NBC+∠BNC=90°,NC=m,BC=−2=,
∵∠NBP=90°,
∴∠NBC+∠ABO=90°,
∴∠ABO=∠BNC,
∴Rt△NCB∽Rt△BOA,
∴,
∴m2=,
解得m=0(舍去)或m=,
∴P(,),
综上可知,当以B,P,N为顶点的三角形与△APM相似时,点P的坐标为P(,)或P(,).【点睛】本题主要考查的是一次函数的图象和应用,二次函数的图象,待定系数法求二次函数的解析式,二次函数的应用,线段的中点,勾股定理,相似三角形的判定及性质,运用了分类讨论思想.22、(1)m<1;(2)m<0【分析】(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac>0然后利用根的判别式确定取值范围;(2)由题意得:x1x2<0,即m<0,即可求解;【详解】解:(1)∵二次函数y=x2-2x+m的图象与x轴相交于A、B两点则方程x2-2x+m=0有两个不相等的实数根∴b2-4ac>0,∴4-4m>0,解得:m<1;(2)∵点A、B位于原点的两侧则方程x2-2x+m=0的两根异号,即x1x2<0∵∴m<0【点睛】本题考查的是二次函数图象与系数的关系,要求学生对函数基本性质、函数与坐标轴的交点等的求解熟悉,这是一个综合性很好的题目.23、①详见解析;②,k=1【分析】①求出,即可证出结论;②设另一根为x1,根据根与系数的关系即可求出结论.【详解】①解:=k2+8>0∴方程有两个不相等实数根②设另一根为x1,由根与系数的关系:∴,k=1【点睛】此题考查的是判断一元二次方程根的情况和根与系数的关系,掌握与根的情况和根与系数的关系是解决此题的关键.24、(1)20%;(2)60元【分析】(1)设该商品平均每月的价格增长率为m,根据该商品的原价及经过两次涨价后的价格,即可得出关于m的一元二次方程,解之取其正值即可得出结论;(2)根据总利润=单价利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)设该商品平均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国隐形渗透性密封剂行业头部企业市场占有率及排名调研报告
- 山东省日照市高三上学期期末考试语文试卷(含答案)
- 2025会议 展览合同
- 2025机动车买卖合同模板
- 运输类合同范本
- 南宁房屋租赁服务合同模板
- 2025建筑施工物资租赁合同示范文本无担保方
- 鸡蛋供货采购合同
- 借款用于投资合同
- 技能培训中的表达技巧训练
- 2024年资格考试-对外汉语教师资格证笔试参考题库含答案
- 2024年4月自考02382管理信息系统答案及评分参考
- (苏版)初三化学上册:第2单元课题1空气
- 2023年12月广东珠海市轨道交通局公开招聘工作人员1人笔试近6年高频考题难、易错点荟萃答案带详解附后
- 腹腔镜肾上腺肿瘤切除术查房护理课件
- 燃气罩式炉应急预案
- 专题23平抛运动临界问题相遇问题类平抛运和斜抛运动
- 超声科医德医风制度内容
- 高三开学收心班会课件
- 蒸汽换算计算表
- 四年级计算题大全(列竖式计算,可打印)
评论
0/150
提交评论