版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省朝阳市名校2025届数学九上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.的相反数是()A. B.2 C. D.2.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是()A. B. C. D.3.二次函数的大致图象如图所示,其对称轴为直线,点A的横坐标满足,图象与轴相交于两点,与轴相交于点.给出下列结论:①;②;③若,则;④.其中正确的个数是()A.1 B.2 C.3 D.44.在中,,、的对边分别是、,且满足,则等于()A. B.2 C. D.5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A. B.C. D.6.已知线段a、b、c、d满足ab=cd,把它改写成比例式,正确的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d7.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°8.已知关于x的二次方程有两个实数根,则k的取值范围是()A. B.且 C. D.且9.的相反数是()A. B. C.2019 D.-201910.如图,在△ABC中,DE∥BC,AD=8,DB=4,AE=6,则EC的长为()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.12.如图是二次函数的部分图象,由图象可知不等式的解集是_______.13.在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为_________m.14.一种微粒的半径是1.11114米,这个数据用科学记数法表示为____.15.如图,转动转盘一次,当转盘停止后(指针落在线上重转),指针停留的区域中的数字为偶数的概率是___________.16.如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.17.如图,在中,,且把分成面积相等的两部分.若,则的长为________.18.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是_____.三、解答题(共66分)19.(10分)倡导全民阅读,建设书香社会.(调查)目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.(百度百科)某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平.(问题解决)(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x.20.(6分)直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.21.(6分)已知:二次函数、图像的顶点分别为A、B(其中m、a为实数),点C的坐标为(0,).(1)试判断函数的图像是否经过点C,并说明理由;(2)若m为任意实数时,函数的图像始终经过点C,求a的值;(3)在(2)的条件下,存在不唯一的x值,当x增大时,函数的值减小且函数的值增大.①直接写出m的范围;②点P为x轴上异于原点O的任意一点,过点P作y轴的平行线,与函数、的图像分别相交于点D、E.试说明的值只与点P的位置有关.22.(8分)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设,(其中表示△BCE的面积,表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当时,请直接写出线段AE的长.23.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.求一次函数和反比例函数的表达式;请直接写出时,x的取值范围;过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.24.(8分)如图,四边形内接于,对角线为的直径,过点作的垂线交的延长线于点,过点作的切线,交于点.(1)求证:;(2)填空:①当的度数为时,四边形为正方形;②若,,则四边形的最大面积是.25.(10分)小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“书法展示”、“器乐独奏”3个项目(依次用、、表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用、表示),参加人员在每个阶段各随机抽取一个项目完成.(1)用画树状图或列表的方法,列出小明参加项目的所有等可能的结果;(2)求小明恰好抽中、两个项目的概率.26.(10分)如图,是的弦,为半径的中点,过作交弦于点,交于点,且.(1)求证:是的切线;(2)连接、,求的度数:(3)如果,,,求的半径.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.2、B【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:,故选:B.【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.3、C【分析】根据对称轴的位置、开口方向、与y轴的交点可对①②④进行判断,根据,转化为代数,计算的值对③进行判断即可.【详解】解:①∵抛物线开口向下,∴,∵抛物线对称轴为直线,∴,∴∴,故①正确,②∵,,∴,又∵抛物线与y轴交于负半轴,∴,∴,故②错误,③∵点C(0,c),,点A在x轴正半轴,∴A,代入得:,化简得:,又∵,∴即,故③正确,④由②可得,当x=1时,,∴,即,故④正确,所以正确的是①③④,故答案为C.【点睛】本题考查了二次函数中a,b,c系数的关系,根据图象得出a,b,c的的关系是解题的关键.4、B【分析】求出a=2b,根据锐角三角函数的定义得出tanA=,代入求出即可.【详解】解:a2-ab-2b2=0,
(a-2b)(a+b)=0,
则a=2b,a=-b(舍去),
则tanA==2,
故选:B.【点睛】本题考查了解二元二次方程和锐角三角函数的定义的应用,注意:tanA=.5、A【分析】本题可先由二次函数y=ax2+bx+c图象得到字母系数的正负,再与一次函数y=ax+b的图象相比较看是否一致.【详解】A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选A.6、A【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、c:a=d:b⇒bc=ad,故错误D、b:c=a:d⇒ad=bc,故错误.故选A.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.7、D【解析】解:∵B是弧AC的中点,∴∠AOB=2∠BDC=80°.又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.点睛:本题考查了圆周角定理,正确理解圆周角定理求得∠AOB的度数是关键.8、B【分析】根据一元二次方程根的判别式让∆=b2−4ac≥1,且二次项的系数不为1保证此方程为一元二次方程.【详解】解:由题意得:且,解得:且,故选:B.【点睛】本题考查了一元二次方程根的判别式,方程有2个实数根应注意两种情况:∆≥1,二次项的系数不为1.9、A【解析】直接利用相反数的定义分析得出答案.【详解】解:的相反数是:.故选A.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.10、C【分析】根据平行线所截的直线形成的线段的比例关系,可得,代数解答即可.【详解】解:由题意得,,,解得.【点睛】本题考查了平行线截取直线所得的对应线段的比例关系,理解掌握该比例关系列出比例式是解答关键.二、填空题(每小题3分,共24分)11、﹣1【详解】∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.12、【解析】求方程的解即是求函数图象与x轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x轴的一个交点为5,所以,另一交点为2-3=-1.∴x1=-1,x2=5.∴不等式的解集是.故答案为【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.13、12【分析】根据某物体的实际高度:影长=被测物体的实际高度:被测物体的影长即可得出答案.【详解】设旗杆的高度为xm,∵∴故答案为12【点睛】本题主要考查相似三角形的应用,掌握某物体的实际高度:影长=被测物体的实际高度:被测物体的影长是解题的关键.14、【解析】试题分析:科学计数法是指a×,且1≤<11,小数点向右移动几位,则n的相反数就是几.考点:科学计数法15、【分析】由1占圆,2与3占,可得把数字为1的扇形可以平分成2部分,即可得转动转盘一次共有4种等可能的结果,分别是1,1,2,3;然后由概率公式即可求得.【详解】解:占圆,2与3占,把数字为1的扇形可以平分成2部分,转动转盘一次共有4种等可能的结果,分别是1,1,2,3;当转盘停止后,指针指向的数字为偶数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率所求情况数与总情况数之比.16、(-2,0)【解析】由C(0,c),D(m,c),得函数图象的对称轴是,设A点坐标为(x,0),由A.
B关于对称轴对称得,解得x=−2,即A点坐标为(−2,0),故答案为(−2,0).17、【分析】由平行于BC的直线DE把△ABC分成面积相等的两部分,可知△ADE与△ABC相似,且面积比为,则相似比为,的值为,可求出AB的长,则DB的长可求出.【详解】∵DE∥BC
∴△ADE∽△ABC
∵DE把△ABC分成面积相等的两部分
∴S△ADE=S四边形DBCE
∴
∴∵AD=4,
∴AB=4∴DB=AB-AD=4-4
故答案为:4-4【点睛】本题考查了相似三角形的判定,相似三角形的性质,面积比等于相似比的平方的逆用等.18、【解析】从数﹣2,﹣,1,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,由题意可知正比例函数y=kx的图象经过第三、第一象限,即可得到k=mn>1.由树状图可知符合mn>1的情况共有2种,因此正比例函数y=kx的图象经过第三、第一象限的概率是.故答案为.三、解答题(共66分)19、(1)该社区有电子媒体阅读行为人数占人口总数的百分比为50%.(2)x为10%.【分析】(1)根据题意,利用某地传统媒体阅读率为80%,数字媒体阅读率为40%,而综合阅读率为90%,得出等式求出答案;(2)根据综合阅读人数﹣纸媒体阅读人数=只读电子媒体的人数,结合该地每五年纸媒体阅读人数按百分数x减少,综合阅读人数按百分数x增加列出方程即可求出答案.【详解】解:(1)设某地人数为a,既有传统媒体阅读又有数字媒体阅读的人数为y,则传统媒体阅读人数为0.8a,数字媒体阅读人数为0.4a.依题意得:0.8a+0.4a﹣y=0.9a,解得y=0.3a,∴传统媒体阅读又有数字媒体阅读的人数占总人口总数的百分比为30%.则该社区有电子媒体阅读行为人数占人口总数的百分比为=80%﹣30%=50%.(2)依题意得:0.9a(1+x)2+0.4a(1﹣x)2=0.5a(1+0.53),整理得:5x2+26x﹣2.65=0,解得:x1=0.1=10%,x2=﹣5.3(舍去),答:x为10%.【点睛】此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.20、(1);(2)2<x<8;(3)点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【解析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)观察图象,根据A、B两点的横坐标即可确定.(3)分两种情形讨论求解即可.【详解】解:(1)∵点A(m,4)和点B(8,n)在图象上,∴,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入得解得:,所以直线AB的解析式为:(2)由图象可得,当x>0时,的解集为2<x<8.(3)由(1)得直线AB的解析式为,当x=0时,y=5,当y=0时,x=10,即C点坐标为(0,5),D点坐标为(10,0)∴OC=5,OD=10,∴设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10-a由∠CDO=∠ADP可得①当时,△COD∽△APD,此时AP∥CO,,解得a=2,故点P坐标为(2,0)②当时,△COD∽△PAD,即,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【点睛】本题是反比例函数综合题,还考查了一次函数的性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用分类讨论的思想思考问题,属于中考常考题型.21、(1)函数y1的图像经过点C,见解析;(2);(3)①;②见解析【分析】(1)取x=0时,计算得,说明函数的图像经过点C;(2)将点C(0,)代入得,求得a的值;(3)①只要的对称轴始终在的对称轴右侧,就满足题目的要求,得出m的范围;②设点P的坐标为(,0),求得DE=,利用勾股定理求得AB=,即可说明结论.【详解】(1)函数的图像经过点C.理由如下:当x=0时,==,∴函数的图像经过点C.(2)将点C(0,)代入得:,∴,∵m为任意实数时,函数的图像始终经过点C,∴的成立与m无关,∴,∴;(3)①的对称轴为:,的对称轴为:,∵,∴两函数的图像开口向下,当时,x增大时,函数的值减小且函数的值增大.∴;②设点P的坐标为(,0),则=,=,∴DE===由①可知:,∴DE=;过A点作x轴的平行线,过B点作y轴的平行线,两平行线相交点F,则点F的坐标为(,),∴AF==,BF==,∴AB==,∴==,故的值只与点P的位置有关.【点睛】本题考查了二次函数的图象与系数之间的关系,抛物线的顶点坐标公式、对称轴方程、勾股定理,构造直角三角形ABF求得AB的长是解题的关键.22、(1)(2)();(3)或【分析】(1)过点作,垂足为点.,则.根据构建方程求出即可解决问题.(2)①证明,可得,由此构建关系式即可解决问题.②分两种情形:当时,当时,分别求解即可解决问题.【详解】解:(1)是等边三角形,,.,,,,,,.过点作,垂足为点.设,则.在中,,,,,在中,,,解得.所以线段的长是.(2)①设,则,.,,,又,,,又,,,由(1)得在中,,,,.②当时,,则有,整理得,解得或(舍弃),.当时,同法可得当时,,整理得,解得(舍弃)或1,.综上所述:当∠CAD<120°时,;当120°<∠CAD<180°时,.【点睛】本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.23、反比例函数的解析式为,一次函数解析式为:;当或时,;当点C的坐标为或时,.【分析】(1)利用待定系数法求出k,求出点B的坐标,再利用待定系数法求出一次函数解析式;(2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD,分点C在点D的左侧、点C在点D的右侧两种情况解答.【详解】点在反比例函数的图象上,,反比例函数的解析式为,点在反比例函数的图象上,,则点B的坐标为,由题意得,,解得,,则一次函数解析式为:;由函数图象可知,当或时,;,,,由题意得,,在中,,即,解得,,当点C在点D的左侧时,点C的坐标为,当点C在点D的右侧时,点C的坐标为,当点C的坐标为或时,.【点睛】本题考查一次函数和反比例函数的交点问题,熟练掌握待定系数法求函数解析式的一般步骤、灵活运用分类讨论思想、数形结合思想是解题的关键.24、(1)证明见解析;(2)①;②1.【分析】(1)根据已知条件得到CE是的切线.根据切线的性质得到DF=CF,由圆周角定理得到∠ADC=10°,于是得到结论;(2)①连接OD,根据圆周角定理和正方形的判定定理即可得到结论;②根据圆周角定理得到∠ADC=∠ABC=10°,根据勾股定理得到根据三角形的面积公式即可得到结论.【详解】(1)证明:∵是的直径,,∴是的切线.又∵是的切线,且交于点,∴,∴,∵是的直径,∴,∴,,∴,∴,∴.(2)解:①当∠ACD的度数为45°时,四边形ODFC为正方形;理由:连接OD,∵AC为的直径,∴∠ADC=10°,∵∠ACD=45°,∴∠DAC=45°,∴∠DOC=10°,∴∠DOC=∠ODF=∠O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管内科护理制度
- 器材管理制度
- 11.3全等三角形判定SAS课件
- 2024年黄山考客运从业资格证考试题目
- 吉首大学《复变函数》2021-2022学年第一学期期末试卷
- 重庆市2023-2024学年高三年级上册期中考试英语试题(含答案)
- 吉林艺术学院《电视节目策划》2021-2022学年第一学期期末试卷
- 协议书范文离婚书范本模板
- 2024年大棚种植蔬菜回收合同范本
- 肉鸡养殖场收购协议书范文模板
- 企业风险分析表格
- 公安派出所建筑外观形象设计规范1
- 产品标识控制程序文件
- (施工方案)双梁桥式起重机安装施工方案
- 提高内镜中心内镜洗消合格率PDCA
- DBJ∕T13-354-2021 既有房屋结构安全隐患排查技术标准
- 建设工程质量管理手册
- 调机品管理规定
- 园长思想政治鉴定范文(5篇)
- 质量管理体系文件分类与编号规定
- 2022年工程项目技术管理人员批评与自我批评
评论
0/150
提交评论