贵州省7月普通高中学2025届九上数学期末学业质量监测试题含解析_第1页
贵州省7月普通高中学2025届九上数学期末学业质量监测试题含解析_第2页
贵州省7月普通高中学2025届九上数学期末学业质量监测试题含解析_第3页
贵州省7月普通高中学2025届九上数学期末学业质量监测试题含解析_第4页
贵州省7月普通高中学2025届九上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省7月普通高中学2025届九上数学期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,矩形中,,交于点,,分别为,的中点.若,,则的度数为()A. B. C. D.2.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A. B. C. D.3.当取下列何值时,关于的一元二次方程有两个相等的实数根()A.1. B.2 C.4. D.4.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为()A.2 B.2 C.4﹣2 D.2﹣25.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()A.等于2 B.等于 C.等于 D.无法确定6.已知关于x的一元二次方程xaxb0ab的两个根为x1、x2,x1x2则实数a、b、x1、x2的大小关系为()A.ax1bx2 B.ax1x2b C.x1ax2b D.x1abx27.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.“概率为1的事件”是必然事件8.对于非零实数,规定,若,则的值为A. B. C. D.9.如图,在Rt△ABC中BC=2,以BC的中点O为圆心的⊙O分别与AB,AC相切于D,E两点,的长为()A. B. C.π D.2π10.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x211.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了行或列,则列方程得()A.(8﹣)(10﹣)=8×10﹣40 B.(8﹣)(10﹣)=8×10+40C.(8+)(10+)=8×10﹣40 D.(8+)(10+)=8×10+4012.下列是电视台的台标,属于中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,则b的值为_____.14.在一个不透明的塑料袋中装有红色白色球共个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在左右,则口袋中红色球可能有________个.15.如图,在△ABC中,D、E、F分别在AB、AC、BC上,DE∥BC,EF∥AB,AD:BD=5:3,CF=6,则DE的长为_____.16.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度(单位:)与水流喷出时间(单位:)之间的关系式为,那么水流从喷出至回落到水池所需要的时间是__________.17.如图,是的直径,点在上,且,垂足为,,,则__________.18.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为______cm.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.20.(8分)如图,直线y=kx+b(b>0)与抛物线y=x2相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,于y轴相交于点C,设∆OCD的面积为S,且kS+8=0.(1)求b的值.(2)求证:点(y1,y2)在反比例函数y=的图像上.21.(8分)在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣1,2)在图象G上,求n的值.(2)当n=﹣1时.①若Q(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,直接写出k的取值范围.(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD的边与图象G有且只有三个公共点时,直接写出n的取值范围.22.(10分)如图,为反比例函数(x>0)图象上的一点,在轴正半轴上有一点,.连接,,且.(1)求的值;(2)过点作,交反比例函数(x>0)的图象于点,连接交于点,求的值.23.(10分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.24.(10分)如图1,在中,为锐角,点为射线上一点,联结,以为一边且在的右侧作正方形.(1)如果,,①当点在线段上时(与点不重合),如图2,线段所在直线的位置关系为,线段的数量关系为;②当点在线段的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果,是锐角,点在线段上,当满足什么条件时,(点不重合),并说明理由.25.(12分)如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.26.在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.应用:(1)直接写出△MNC的面积S的取值范围;(2)若DM:DB=3:5,则AN与BN的数量关系是.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据矩形的性质和直角三角形的性质以及中位线的性质,即可得到答案.【详解】∵,分别为,的中点,∴MN是∆OBC的中位线,∴OB=2MN=2×3=6,∵四边形是矩形,∴OB=OD=OA=OC=6,即:AC=12,∵AB=6,∴AC=2AB,∵∠ABC=90°,∴=30°.故选A.【点睛】本题主要考查矩形的性质和直角三角形的性质以及中位线的性质,掌握矩形的对角线互相平分且相等,是解题的关键.2、C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,

∴两个骰子的点数相同的概率为:故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比3、A【分析】根据一元二次方程的判别式判断即可.【详解】要使得方程由两个相等实数根,判别式△=(-2)2-4m=4-4m=0,解得m=1.故选A.【点睛】本题考查一元二次方程判别式的计算,关键在于熟记判别式与根的关系.4、D【分析】根据直角三角形斜边上的中线等于斜边的一半,取BC的中点O,连接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根据三角形的三边关系可知当O、P、A三点共线时,AP的长度最小.【详解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如图,取BC的中点O,连接OP、OA,则OP=BC=1,在Rt△AOB中,OA=,根据三角形的三边关系,OP+AP≥OA,∴当O、P、A三点共线时,AP的长度最小,AP的最小值=OA﹣OP=﹣1.故选:D.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系.确定出AP最小值时点P的位置是解题关键,也是本题的难点.5、B【解析】如图分别过D作DE⊥Y轴于E,过C作CF⊥Y轴于F,则△ODE∽△OBF,∵OD:DB=1:2∴相似比=1:3∴面积比=OD:DB=1:9即又∴∴解得K=故选B6、D【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=时,由题意可知:(x−a)(x−b)−=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.7、D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为.故C错误;D.“概率为1的事件”是必然事件,正确.故选D.8、A【解析】试题分析:∵,∴.又∵,∴.解这个分式方程并检验,得.故选A.9、B【分析】连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.【详解】连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=2∴由勾股定理可知AB=2,∴r=1,∴==故选B【点睛】此题考查切线的性质,弧长的计算,解题关键在于作辅助线10、B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时,y=ax2+bx+c=bx+c,不是二次函数,故不符合题意;B.y=x(x﹣1)=x2-x,是二次函数,故符合题意;C.的自变量在分母中,不是二次函数,故不符合题意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.11、D【解析】增加了行或列,现在是行,列,所以(8+)(10+)=8×10+40.12、C【解析】根据中心对称图形的概念即可求解.【详解】A、不是中心对称图形,故此选项错误;

B、不是中心对称图形,故此选项错误;

C、是中心对称图形,故此选项正确;

D、不是中心对称图形,故此选项错误.

故选:C.【点睛】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.二、填空题(每题4分,共24分)13、【分析】根据二次函数y=x2﹣bx(b为常数),当2≤x≤5时,函数y有最小值﹣1,利用二次函数的性质和分类讨论的方法可以求得b的值.【详解】∵二次函数y=x2﹣bx=(x)2,当2≤x≤5时,函数y有最小值﹣1,∴当5时,x=5时取得最小值,52﹣5b=﹣1,得:b(舍去),当25时,x时取得最小值,1,得:b1=2(舍去),b2=﹣2(舍去),当2时,x=2时取得最小值,22﹣2b=﹣1,得:b,由上可得:b的值是.故答案为:.【点睛】本题考查了二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.14、1【分析】设有红球有x个,利用频率约等于概率进行计算即可.【详解】设红球有x个,根据题意得:=20%,解得:x=1,即红色球的个数为1个,故答案为:1.【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.15、1【分析】根据平行线分线段成比例定理得到,证明△AED∽△ECF,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:∵DE∥BC,∴,∠AED=∠C,∵EF∥AB,∴∠CEF=∠A,又∠AED=∠C,∴△AED∽△ECF,∴,即,解得,DE=1,故答案为:1.【点睛】本题考查的是相似三角形的判定和性质、平行线分线段成比例定理,掌握相似三角形的判定和性质是解题的关键.16、1【分析】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.【详解】水流从抛出至回落到地面时高度h为0,

把h=0代入h=30t-5t2得:5t2-30t=0,

解得:t1=0(舍去),t2=1.

故水流从抛出至回落到地面所需要的时间1s.故答案为:1【点睛】本题考查的是二次函数在实际生活中的应用,关键是正确理解题意,利用函数解决问题,结合实际判断所得出的解.17、2【分析】先连接OC,在Rt△ODC中,根据勾股定理得出OC的长,即可求得答案.【详解】连接OC,如图,

∵CD=4,OD=3,,

在Rt△ODC中,

∴,∵,∴.故答案为:.【点睛】此题考查了圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18、1【解析】连接OA,设CD为x,由于C点为弧AB的中点,CD⊥AB,根据垂径定理的推理和垂径定理得到CD必过圆心0,即点O、D、C共线,AD=BD=AB=40,在Rt△OAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可.【详解】解:连接OA、如图,设⊙O的半径为R,

∵CD为水深,即C点为弧AB的中点,CD⊥AB,∴CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,

在Rt△OAD中,OA=50,OD=50-x,AD=40,

∵OD2+AD2=OA2,

∴(50-x)2+402=502,解得x=1,

即水深CD约为为1.

故答案为;1【点睛】本题考查了垂径定理的应用:从实际问题中抽象出几何图形,然后垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3)1.【分析】(1)可得∠ADB=90°,证得∠ABD=∠CAD,∠AED=∠ABD,则结论得证;(2)证得∠EDB=∠DAE,证明△EDG∽△EAD,可得比例线段,则结论得证;(3)连接OE,证明OE∥AD,则可得比例线段,则EF可求出.【详解】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°∵AC⊥AB,∴∠CAB=90°,∴∠CAD+∠BAD=90°∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=2,∴,∴EF=1.【点睛】本题考查了圆的综合应用题,涉及了圆周角定理、相似三角形的性质与判定等知识点,解题的关键是熟悉上述知识点.20、(1)b=4(b>0);(2)见解析【分析】(1)根据直线解析式求OC和OD长,依据面积公式代入即可得;(2)联立方程,根据根与系数的关系即可证明.【详解】(1)∵D(0,b),C(-,0)∴由题意得OD=b,OC=-∴S=∴k•()+8=0∴b=4(b>0)(2)∵∴∴∴∴点(y1,y2)在反比例函数y=的图像上.【点睛】本题考查二次函数的性质及图象与直线的关系,联立方程组并求解是解答两图象交点问题的重要途径,理解图象与方程的关系是解答此题的关键.21、(1)n的值为﹣3或1;(2)①t=2±或﹣4或0,②﹣2﹣≤k≤﹣2;(3)当n=0,n=5,1<n<3时,矩形ABCD的边与图象G有且只有三个公共点.【分析】(1)先确定图像G2的顶点坐标和解析式,然后就P分别在图象G1和G2上两种情况讨论求解即可;(2)①先分别求出图象G1和G2的解析式,然后就P分别在图象G1和G2上两种情况讨论求解即可;②结合图像如图1,即可确定k的取值范围;(3)结合图像如图2,根据分n的取值范围分类讨论即可求解.【详解】(1)∵抛物线y=x2﹣4x+n=(x﹣2)2+n﹣4,∴顶点坐标为(2,n﹣4),∵将G1绕坐标原点旋转180°得到图象G2,∴图象G2的顶点坐标为(﹣2,﹣n+4),∴图象G2的解析式为:y=﹣(x+2)2+4﹣n,若点P(﹣1,2)在图象G1上,∴2=9+n﹣4,∴n=﹣3;若点P(﹣1,2)在图象G2上,∴2=﹣1+4﹣n,∴n=1;综上所述:点P(﹣1,2)在图象G上,n的值为﹣3或1;(2)①当n=﹣1时,则图象G1的解析式为:y=(x﹣2)2﹣5,图象G2的解析式为:y=﹣(x+2)2+5,若点Q(t,1)在图象G1上,∴1=(t﹣2)2﹣5,∴t=2±,若点Q(t,1)在图象G2上,∴1=﹣(t+2)2+5,∴t1=﹣4,t2=0②如图1,当x=2时,y=﹣5,当x=﹣2时,y=5,对于图象G1,在y轴右侧,当y=5时,则5=(x﹣2)2﹣5,∴x=2+>3,对于图象G2,在y轴左侧,当y=﹣5时,则﹣5=﹣(x+2)2+5,∴x=﹣2﹣,∵当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,∴﹣2﹣≤k≤﹣2;(3)如图2,∵图象G2的解析式为:y=﹣(x+2)2+4﹣n,图象G1的解析式为:y=(x﹣2)2+n﹣4,∴图象G2的顶点坐标为(﹣2,﹣n+4),与y轴交点为(0,﹣n),图象G1的顶点坐标为(2,n﹣4),与y轴交点为(0,n),当n≤﹣1时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD最多1交点,当﹣1<n<0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有3交点,当n=0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当0<n≤1时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有1交点,当1<n<3时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当3≤n<7时,图象G1与矩形ABCD有2个交点,当3≤n<5时,图象G2与矩形ABCD有2个交点,n=5时,图象G2与矩形ABCD有1个交点,n>5时,没有交点,∵矩形ABCD的边与图象G有且只有三个公共点,∴n=5,当n≥7时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD没有交点,综上所述:当n=0,n=5,1<n<3时,矩形ABCD的边与图象G有且只有三个公共点.【点睛】本题属于二次函数综合题,考查了二次函数图像的性质、二次函数的解析式以及二次函数图像上的点,掌握分类讨论思想是解答本题的关键.22、(1)k=12;(2).【分析】(1)过点作交轴于点,交于点,易知OH长度,在直角三角形OHA中得到AH长度,从而得到A点坐标,进而算出k值;(2)先求出D点坐标,得到BC长度,从而得到AM长度,由平行线得到,所以【详解】解:(1)过点作交轴于点,交于点.(2)【点睛】本题主要考查反比例函数与相似三角形的综合问题,难度不大,解题关键在于求出k23、(1)详见解析;(3)AE=;(3)≤AE<.【解析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(3)利用勾股定理得出ED3+PD3=EC3+CP3=PE3,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(3)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=3,BC=1.∴PC=3.∵∠PDE=∠C=90°,∴ED3+PD3=EC3+CP3=PE3.∴x3+33=(8-x)3+33.解得x=.∴AE=;(3)解:如图3,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC3+BC3=BE3,∴(8-x)3+13=x3,解得:x=,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC3=DC3+DE3,∴(8-x)3=13+x3,解得:x=,∵P为边BC上一个动点(可以包括点C但不包括点B),∴线段AE长度的取值范围为:≤AE<.【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.24、(1)①垂直,相等;②见解析;(2)见解析.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)过点A作AG⊥AC交CB或CB的延长线于点G,于是得到∠GAC=90°,可推出∠ACB=∠AGC,证得AC=AG,根据(1)的结论于是得到结果.【详解】(1)①正方形ADEF中,AD=AF.∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF.在△DAB与△FAC中,,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案为垂直、相等;②成立,理由如下:∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵,∴△BAD≌△CAF,∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°,∴CF⊥BD;(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°.∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG.在△GAD与△CAF中,,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论