版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第02讲相反数与绝对值【人教版】·模块一相反数·模块二绝对值·模块三有理数比较大小·模块四课后作业模块一模块一相反数相反数(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)a−b的相反数是b−a;a−b+c的相反数是-a+b−c;(3)相反数的和为0b+a=0a,b互为相反数;相反数的商为-1。【考点1相反数的概念及性质】【例1.1】同学们,我们是2023届学生,这个数字2023的相反数是(
)A.2023 B.12023 C.−2023 D.【例1.2】下列两个数不是互为相反数的是(
)A.−0.25与14 B.213与−73 C.−5与5【例1.3】已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,则点B表示的数是______________.【变式1.1】15的相反数是(
A.−5 B.−15 C.5 【变式1.2】若一个数的相反数等于它本身,那么这个数一定是(
)A.0 B.1 C.−1 D.1【变式1.3】如果a−4和−2互为相反数,那么a=___________.【变式1.4】若一个数与它的相反数在数轴上对应的点之间的距离为4,则这个数是(
)A.-2 B.0 C.±2 D.±4【考点2利用相反数的意义化简】【例2.1】−+2A.2 B.12 C.−12【例2.2】下列两数互为相反数的一组是(
)A.+20和−−20 B.+−0.1C.−0.3和−+0.3 D.2.5和【例2.3】如图,图中数轴(缺原点)的单位长度为1,点A、B表示的数是互为相反数,则点C所表示的数为(
)A.2 B.-4 C.-1 D.0【变式2.1】化简下列各数:(1)−+2.7(2)−−(3)−−(4)−+【变式2.2】数轴上点A表示的数是−+29,点A、B【变式2.3】如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?模块二模块二绝对值绝对值(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:|a|=a(a≥0)−a(a≤0)(3)|a|是重要的非负数,即|a|≥0,非负性.【考点1绝对值的定义】【例1.1】有理数−2023的绝对值为(
)A.−2023 B.12003 C.2023 D.【例1.2】下列各组数中,互为相反数的是(
)A.−2与−12 B.−2与2 C.−12与−−【例1.3】求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);【变式1.1】−|−3|的相反数是(
)A.−3 B.3 C.13 D.【变式1.2】如图,数轴上表示−12的绝对值的点是(A.M B.N C.P D.Q【考点2绝对值的性质】【例2.1】下列说法中正确的是(
)A.0是最小的数B.最大的负有理数数是-1C.任何有理数的绝对值都是正数D.如果两个数互为相反数,那么它们的绝对值相等.【例2.2】如果一个有理数的绝对值是3,那么这个数是(
)A.3 B.−3 C.3或−3 D.13或【例2.3】有理数a,b,c在数轴上的对应点的位置如图所示,若b+c=0,则a,b,c三个数中绝对值最大的数是(
)A.a B.b C.c D.无法确定【变式2.1】下面的说法是否正确?请将错误的改正过来.(1)有理数的绝对值一定比0大;(2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等;(4)互为相反数的两个数的绝对值相等.【变式2.2】在数轴上到原点的距离小于4的整数个数为____个.【变式2.3】如果a−1=1−a,下列成立的是(
A.a>1 B.a<1 C.a≥1 D.a≤1【变式2.4】m是6的绝对值的相反数,n比m的绝对值大3,求m,n的值.【考点3绝对值的化简】【例3.1】−|−2|=______.【例3.3】补完整下面的直线,使它成为一条数轴,并把下列各数在数轴上表示出来.点A是−212,点B是3.5,点C是【变式3.1】π-【变式3.2】下列计算中,结果等于5的是(
)A.−9−−4 C.−9+−4 【变式3.3】计算:12021模块三模块三有理数比较大小有理数比较大小(1)正数永远比0大,负数永远比0小,正数大于一切负数;(2)两个负数比较大小,绝对值大的数反而小;(4)数轴上的两个数,右边点表示的数总比左边点表示的数大.【考点1有理数大小的比较】【例1.1】下列实数中,比−2小的是(
)A.−52 B.0 C.−【例1.2】最接近−0.618的整数是(
)A.1 B.0 C.−1 D.−2【例1.3】下列有理数的大小关系正确的是(
)A.−−13<−−14 B.【变式1.1】下列四个数中,最大的数是(
)A.2 B.−2 C.12 D.【变式1.2】写一个比−52大比【变式1.3】已知a=−23,b=−2,c=0.01则a,b,c的大小关系(A.a<b<c B.c<a<b C.b<a<c D.c<b<a【考点2利于数轴比较有理数的大小】【例2.1】如图,在数轴上四个有理数a,b,c,d对应点的位置,绝对值最小的数是(
)A.a B.b C.c D.d【例2.2】有理数a、b在数轴上的位置如图所示,则正确的式子是()A.a>b B.a>-b C.-a<-b D.a<b【变式2.1】若有理数a,b在数轴上的对应点的位置如图所示,则a______−b(请用“<,>或=”符号填写).【变式2.2】如图,数轴上A,B,C,D四点中,表示的数与−1.7最接近的是(
)A.点A B.点B C.点C D.点D【变式2.3】在数轴上表示下列各数:−−1,−2,−−3.5,0,【考点3利用绝对值比较有理数的大小】【例3.1】下列说法正确的是(
)A.一个数的绝对值一定是正数B.一个数的相反数一定是负数C.若一个数的绝对值是它本身,则这个数一定是正数D.若一个数的相反数是它本身,则这个数一定是零【例3.2】在−0.1428中用数字3替换其中一个非0数码后,使所得的数最小,则被替换的数字是()A.8 B.3 C.2 D.1【例3.3】比较大小(用“<”或“=”或“>”填空):−3_____−【变式3.1】用“<”、“=”或“>”填空:(1)−0.1__−0.01;(2)−−1__−1;(3)−−7【变式3.2】下列各数中绝对值最小的是(
)A.2021 B.−2023 C.2023 D.−2022【变式3.3】下列四个数中,其绝对值大于1的是(
).A.1 B.0 C.−12 【考点4生活中的有理数的大小比较】【例4.1】以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是(
)A.2℃ B.18℃ C.−20℃【例4.2】人口自然增长率是指在一定时期内(通常为一年)人口增加数与该时期内平均人数之比.人口自然增长率是反映人口发展速度和制定人口计划的重要指标,用来表明人口自然增长的程度和趋势.2015年,一些国家的人口自然增长率(%)如下表所示,人口自然增长趋势最慢的国家是(
)美国日本中国印度德国卡塔尔0.9-0.07720.481.312-0.24.93A.卡塔尔 B.中国 C.日本 D.德国【例4.3】2022年卡塔尔世界杯比赛用球由中国制造,如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是(
)A. B. C. D.【变式4.1】如图是某桥洞的限高标志,则能通过此桥洞的车辆高度是(
)A.6.5m B.6m C.5.5m D.4.5m【变式4.2】下列四个地方:死海(海拔−400米),卡达拉低地(海拔−133米),罗讷河三角洲(海拔−2米),吐鲁番盆地(海拔−154米).其中最低的是__________.模块四模块四课后作业1.如图,数轴上点A表示的数的相反数是(
)A.2 B.−12 C.−2 2.−2320的相反数是(A.2320 B.−2320 C.203.已知一个数的相反数是非正数,则这个数一定是(
)A.正数或零 B.正数 C.零 D.负数4.如图,A,B,C,D是数轴上的四个点,已知a,b均为有理数,且a+b=0,则它们在数轴上的位置不可能落在(
)A.线段AB上 B.线段BC上 C.线段BD上 D.线段AD上5.−2023的绝对值的相反数是(
)A.2023 B.−2023 C.±2023 D.−7.下列计算正确的是(
)A.−+(−8)=−8 B.−−3=3 C.8.1月24日,北方13个省会城市气温创今冬以米新低.其中,长春−27.3°C,沈阳−21.8°C,呼和浩特−28.6°C,太原−19.4°A.长春 B.沈阳 C.呼和浩特 D.太原9.下列各数,为1的是(
)A.−+1 B.+−1 C.−−110.下列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度住宅小区电梯加装及维护服务免责协议6篇
- 2024年大数据分析在医疗健康投资中的应用合同3篇
- 2025年度美容SPA行业资源整合与推广合同
- 2025年度军人离婚法律援助及子女抚养权调解合同3篇
- 2025年度万科与融创中国股权转让合同3篇
- 北京高中会考数学试卷
- 2024年随身携带报警设备采购协议3篇
- 2024年短期租车协议(适用于短期商务租车)
- 2024版废旧设施拆解合同3篇
- 2024版建筑工地劳动协议规范化文本版
- 患者转诊记录单
- 美好生活“油”此而来-暨南大学中国大学mooc课后章节答案期末考试题库2023年
- 买卖合同纠纷案民事判决书
- 神经内科应急预案完整版
- 2023零售药店医保培训试题及答案篇
- UCC3895芯片内部原理解析
- 混凝土设计的各种表格
- 保安员培训教学大纲
- 广东省高等学校“千百十工程”第六批继续培养对象和第
- 【企业杜邦分析国内外文献综述6000字】
- taft波完整版可编辑
评论
0/150
提交评论