2022-2023学年浙江省温州市六校数学八年级第一学期期末综合测试试题含解析_第1页
2022-2023学年浙江省温州市六校数学八年级第一学期期末综合测试试题含解析_第2页
2022-2023学年浙江省温州市六校数学八年级第一学期期末综合测试试题含解析_第3页
2022-2023学年浙江省温州市六校数学八年级第一学期期末综合测试试题含解析_第4页
2022-2023学年浙江省温州市六校数学八年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.72.如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,连接,交于点,连接,若的周长为,,则的周长为()A. B. C. D.3.下列各因式分解中,结论正确的是()A.B.C.D.4.矩形的面积为18,一边长为,则另一边长为()A. B. C. D.245.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为千米/时,则可列方程()A. B.C. D.6.当分式有意义时,x的取值范围是()A.x<2 B.x>2 C.x≠2 D.x≥27.已知点和在一次函数的图象上,则与的大小关系是()A. B. C. D.8.如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=4,点P是线段AD上的动点,连接BP,CP,若△BPC周长的最小值为16,则BC的长为()A.5 B.6 C.8 D.109.下面的计算过程中,从哪一步开始出现错误().A.① B.② C.③ D.④10.下列计算正确的是A. B. C. D.11.如果关于x的方程无解,则m的值是()A.2 B.0 C.1 D.–212.若关于的分式方程无解,则的值为()A.或 B. C.或 D.二、填空题(每题4分,共24分)13.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是_____.14.如果方程有增根,那么______.15.要使代数式有意义,则x的取值范围是_______.16.已知是整数,则正整数n的最小值为___17.如图,在中,,点是边上一动点(不与点重合),过点作的垂线交于点,点与点关于直线对称,连接,当是等腰三角形时,的长为__________.18.计算=_____.三、解答题(共78分)19.(8分)计算或求值(1)计算:(2a+3b)(2a﹣b);(2)计算:(2x+y﹣1)2;(3)当a=2,b=﹣8,c=5时,求代数式的值;(4)先化简,再求值:(m+2),其中m=.20.(8分)如图,△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.连接MB,若AB=8cm,△MBC的周长是14cm.(1)求BC的长;(2)在直线MN上是否存在点P,使PB+CP的值最小?若存在,直接写出PB+CP的最小值;若不存在,说明理由.21.(8分)解分式方程(1)(2)22.(10分)如图,两条公路OA与OB相交于点O,在∠AOB的内部有两个小区C与D,现要修建一个市场P,使市场P到两条公路OA、OB的距离相等,且到两个小区C、D的距离相等.(1)市场P应修建在什么位置?(请用文字加以说明)(2)在图中标出点P的位置(要求:用尺规作图,不写作法,保留作图痕遼,写出结论).23.(10分)拖拉机开始工作时,油箱中有油30L,每小时耗油5L.(1)写出油箱中的剩余测量Q(L)与工作时间t(h)之间的函数表达式,并求出自变量t的取值范围;(2)当拖拉机工作4h时,油箱内还剩余油多少升?24.(10分)把一大一小两个等腰直角三角板(即,)如下图放置,点在上,连结、,的延长线交于点.求证:(1);(2).25.(12分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当时,求与之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?26.如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.(1)当时,判断的形状,并说明理由;(2)求的度数;(3)请你探究:当为多少度时,是等腰三角形?

参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.2、C【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交于点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.3、D【分析】根据因式分解的定义逐项判断即可.【详解】解:A.,变形错误,不是因式分解,不合题意;B.,变形错误,不是因式分解,不合题意;C.,变形错误,不是因式分解,不合题意;D.,变形正确,是因式分解,符合题意.故选:D【点睛】本题考查了因式分解的定义,“将一个多项式变形为几个整式的积的形式叫因式分解”,注意因式分解是一种变形,故等号左右两边要相等.4、C【分析】根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】解:∵矩形的面积为18,一边长为,

∴另一边长为=,

故选:C.【点睛】本题考查矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解题的关键.5、A【解析】设江水的流速为x千米/时,.故选A.点睛:点睛:本题主要考查分式方程的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出顺水和溺水对应的时间,找出合适的等量关系,列出方程即可.6、C【解析】试题分析:根据分式有意义的条件可得:x-2≠0,所以可得:x≠2.故应选C.考点:分式的意义.7、A【分析】根据一次函数y随x的增大而减小可作出判断.【详解】∵一次函数中,∴y随x的增大而减小,又∵和中,∴故选:A.【点睛】本题考查一次函数的增减性,熟练掌握时,y随x的增大而减小是解题的关键.8、B【分析】作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP=16﹣x=CE,依据Rt△BCE中,EB2+BC2=CE2,即可得到82+x2=(16﹣x)2,进而得出BC的长.【详解】解:如图所示,作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP=16﹣x=CE,∵∠BAD=90°,AD∥BC,∴∠ABC=90°,∴Rt△BCE中,EB2+BC2=CE2,∴82+x2=(16﹣x)2,解得x=6,∴BC=6,故选B.【点睛】本题考查勾股定理的应用和三角形的周长,解题的关键是掌握勾股定理的应用和三角形的周长的计算.9、B【解析】直接利用分式的加减运算法则计算得出答案.【详解】解:.故从第②步开始出现错误.故选:B.【点睛】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.10、A【分析】对各项分别进行负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,然后选出正确选项即可.【详解】解:、,故本选项正确;、,故本选项错误;、,故本选项错误;、,故本选项错误;故选:.【点睛】本题考查了负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,属于基础题,掌握各知识点运算法则是解题的关键.11、A【分析】先求得分式方程的增根为x=3,再将原方程化为整式方程,然后把方程的增根x=3代入即可求得m的值.【详解】解:方程去分母得:m+1﹣x=0,解得x=m+1,当分式方程分母为0,即x=3时,方程无解,则m+1=3,解得m=2.故选A.【点睛】本题主要考查分式方程无解的条件:(1)去分母后所得整式方程无解;(2)解去分母后的整式方程得到的解使原方程的分母等于0.12、A【分析】去分母得出方程(a+2)x=3,分两种情况:(1)当方程无解时得a+2=0,进而求a的值;(2)当方程的根是增根时得出x=1或x=0,再分别代入(a+2)x=3,进而求得a的值.【详解】解:将原方程去分母整理得,(a+2)x=3当a+2=0时,该整式方程无解,此时a=﹣2当a+2≠0时,要使分式方程无解,则方程的根为增根,即x=0或x=1把x=0代入(a+2)x=3,此时无解;把x=1代入(a+2)x=3,解得a=1综上所述,a的值为1或﹣2故选:A【点睛】本题主要考查分式方程无解的两个条件:(1)化成整式方程无解,所以原方程无解;(2)求出x的值是分式方程化成整式方程的解,但这个解是最简公分母的值为0,即为增根.掌握这两种情况是解题的关键.二、填空题(每题4分,共24分)13、2【解析】∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,又BE=2,∴EC=1.又∵DE平分∠ADC,∴∠ADE=∠EDC.∵AD∥BC,∴∠ADE=∠DEC.∴∠DEC=∠EDC.∴CD=EC=1.∴□ABCD的周长是2×(6+1)=2.14、-1【解析】分式方程去分母转化为整式方程,把代入整式方程求出m的值即可.【详解】解:去分母得:,由分式方程有增根,得到,代入整式方程得:,故答案为【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.15、x≥-1且x≠1【分析】先根据二次根式有意义,分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵使代数式有意义,∴解得x≥-1且x≠1.故答案为:x≥-1且x≠1.【点睛】本题考查的是代数式有意义的条件,熟知二次根式中的被开方数是非负数,分母不为零是解答此题的关键.16、1【分析】因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵,且是整数,

∴是整数,即1n是完全平方数;

∴n的最小正整数值为1.

故答案为1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.17、或【分析】由勾股定理求出BC,分两种情况讨论:(1)当,根据等腰直角三角形的性质得出BF的长度,即可求出BD的长;(2)当,根据求出BF的长度,即可求出BD的长.【详解】∵等腰中,∴分两种情况(1)当,∴∴∴∵直线l垂直平分BF∴(2)当,∵直线l垂直平分BF∴故答案为:或.【点睛】本题考查了三角形线段长的问题,掌握勾股定理以及等腰直角三角形的性质是解题的关键.18、10【分析】根据零指数幂的意义以及负整数幂的意义即可求出答案.【详解】解:原式=9+1=10,故答案为:10【点睛】本题考查的知识点是零指数幂以及负整指数幂,掌握零指数幂的意义以及负整数幂的意义是解此题的关键.三、解答题(共78分)19、(1)4a2+4ab﹣3b2;(2)4x2+4xy+y2﹣4x﹣2y﹣1;(3);(4)﹣2m﹣6,-5【分析】(1)利用多项式乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式,然后把的值代入计算即可.【详解】解:(1)原式;(2)原式;(3),;(4)原式,当时,原式.【点睛】本题考查了多项式乘法和、分式的化简求值以及代数式求值.掌握整式乘法和分式运算法则熟练运算是解题关键.20、(1)6;(2)1【解析】(1)根据垂直平分线的性质,可得与的关系,再根据三角形的周长,可得答案;(2)根据两点之间线段最短,可得点与点的关系,可得与的关系.【详解】解:(1)∵MN是AB的垂直平分线∴MA=MB∵=即∴;(2)当点与点重合时,PB+CP的值最小,PB+CP能取到的最小值=1.【点睛】本题考查线段的垂直平分线上的点到线段两个端点的距离相等.21、(1)x;(2)无解.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)去分母得:x﹣1=﹣1﹣2(x-2),去括号得:x﹣1=﹣1﹣2x+4,移项合并得:3x=4,解得:x,经检验x是分式方程的解;(2)去分母得:去括号得:x2+2x﹣x2﹣x+2=3,移项合并得:x=1,经检验x=1是增根,分式方程无解.【点睛】此题主要考查分式方程的求解,解题的关键是熟知分式方程的解法.22、(1)详见解析;(2)详见解析.【解析】(1)直接利用角平分线的性质以及线段垂直平分线的性质分析得出答案;(2)直接利用角平分线的作法以及线段垂直平分线的作法得出答案.【详解】(1)点P应修建在∠AOB的角平分线和线段CD的垂直平分线的交点处;(2)如图所示:点P即为所求.【点睛】此题主要考查了应用设计与作图,正确掌握角平分线的性质以及线段垂直平分线的性质是解题关键.23、(1)Q=30﹣5t(0≤t≤6);(2)10L【分析】(1)根据“油箱中的余油量=油箱中原有油量-消耗的油量”,即可列出函数解析式和自变量的取值范围;(2)把t=4代入函数解析式,即可得到答案.【详解】(1)由题意可得,油箱中的余油量Q(L)与工作时间t(h)之间的函数关系是:Q=30﹣5t(0≤t≤6);(2)把t=4代入,得Q=30﹣5t=30-5×4=10,答:当拖拉机工作4h时,油箱内还剩余油10L.【点睛】本题主要考查根据题意列函数解析式和自变量的取值范围,掌握数量关系“油箱中的余油量=油箱中原有油量-消耗的油量”,是解题的关键.24、(1)详见解析;(2)详见解析【解析】(1)由题意根据全等三角形的判定定理运用SAS进行分析证明即可;(2)根据题意利用全等三角形的性质以及对顶角,进行等量代换即可得出.【详解】解:(1)在和中,(直角),;(2).【点睛】本题考查全等三角形的判定和等腰直角三角形的性质,能灵活运用相关性质进行推理是解此题的关键.25、(1);(2);(3)甲加工或时,甲与乙加工的零件个数相等.【解析】(1)观察图象可得零件总个数,观察AB段可得甲机器的速度,观察BC段结合甲的速度可求得乙的速度;(2)设当时,与之间的函数解析式为,利用待定系数法求解即可;(3)分乙机器出现故障前与修好故障后两种情况分别进行讨论求解即可.【详解】(1)观察图象可知一共加工零件270个,甲机器每小时加工零件:(90-50)÷(3-1)=20个,乙机器排除故障后每小时加工零件:(270-90)÷(6-3)-20=40个,故答案为:270,20,40;设当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论