2022-2023学年山东省聊城市冠县东古城镇中学数学八年级第一学期期末经典试题含解析_第1页
2022-2023学年山东省聊城市冠县东古城镇中学数学八年级第一学期期末经典试题含解析_第2页
2022-2023学年山东省聊城市冠县东古城镇中学数学八年级第一学期期末经典试题含解析_第3页
2022-2023学年山东省聊城市冠县东古城镇中学数学八年级第一学期期末经典试题含解析_第4页
2022-2023学年山东省聊城市冠县东古城镇中学数学八年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如果等腰三角形两边长为和,那么它的周长是().A. B. C.或 D.2.在一张长为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.43.下列各数,是无理数的是()A. B. C. D.4.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75° B.65° C.60° D.55°5.二次根式中字母x的取值范围是()A.x>2 B.x≠2 C.x≥2 D.x≤26.下列二次根式的运算正确的是()A. B. C. D.7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm8.下面是一名学生所做的4道练习题:①;②;③,④,他做对的个数是()A.1 B.2 C.3 D.49.若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是A. B. C. D.10.ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2 D.a:b:c=3:4:611.下列计算正确的是()A.a3•a⁴=a12 B.(ab2)3=ab6 C.a10÷a2=a5 D.(﹣a4)2=a812.如图所示的图案中,是轴对称图形且有两条对称轴的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知5+7的小数部分为a,5﹣7的小数部分为b,则a+b=_____.14.如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________.15.如图,点、分别是、的中点,若,则_____.16.如图,在平面直角坐标系中,点B,A分别在x轴、y轴上,,在坐标轴上找一点C,使得是等腰三角形,则符合条件的等腰三角形ABC有________个.17.若,,则=_________.18.若关于的方程组的解互为相反数,则k=_____.三、解答题(共78分)19.(8分)解:20.(8分)如图,ΔABC中,A点坐标为(2,4),B点坐标为(-3,-2),C点坐标为(3,1).(1)在图中画出ΔABC关于y轴对称的ΔA′B′C′(不写画法),并写出点A′,B′,C′的坐标;(2)求ΔABC的面积.21.(8分)某市计划进行一项城市美化工程,已知乙队单独完成此项工程比甲队单独完成此项工程多用10天,且甲队单独施工30天和乙队单独施工45天的工作量相同.(1)甲、乙两队单独完成此项工作各需多少天?(2)已知甲队每天的施工费用为8000元,乙队每天的施工费用为6000元.为了缩短工期,指挥部决定该工程由甲、乙两队一起完成.则该工程施工费用是多少元?22.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?23.(10分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?24.(10分)计算:[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷4y.25.(12分)如图(1),在ABC中,,BC=9cm,AC=12cm,AB=15cm.现有一动点P,从点A出发,沿着三角形的边ACCBBA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=______时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,,DE=4cm,DF=5cm,.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着ABBCCA运动,回到点A停止.在两点运动过程中的某一时刻,恰好,求点Q的运动速度.26.已知2是的平方根,是的立方根,求的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】分两种情况:①底为3cm,腰为7cm时,②底为7cm,腰为3cm时;还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:

①底为3cm,腰为7cm时,∵,

∴等腰三角形的周长(cm);

②底为7cm,腰为3cm时,

∵,

∴不能构成三角形;

综上,等腰三角形的周长为17cm;

故选:B.【点睛】本题考查了等腰三角形的性质、三角形的三边关系定理;解此类题注意分情况讨论,还要看是否符合三角形的三边关系.2、B【解析】有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,如图2,此时AE=EF=5cm.故选B.3、D【解析】把各项化成最简之后,根据无理数定义判断即可.【详解】解:A项,,为有理数;B项是有限小数,为有理数;C项为分数,是有理数;D项是无限不循环小数,为无理数.故选:D.【点睛】本题主要考查无理数的定义,理解掌握定义是解答关键.4、A【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【详解】解:∵AB∥CD,∴∠B=180°-∠C=180°-60°=120°,∵五边形ABCDE内角和为(5-2)×180°=540°,∴在五边形ABCDE中,∠E=540°-135°-120°-60°-150°=1°.故图中x的值是1.故选A.【点睛】本题主要考查了平行线的性质,多边形内角和定理,解决本题的关键是对基础知识的熟练掌握及综合运用.5、C【分析】根据被开方数大于等于0列不等式求解即可.【详解】由题意得,x﹣1≥0,解得x≥1.故选:C.【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.6、B【分析】根据二次根式的性质对A进行判断,根据二次根式的除法法则对B进行判断,根据二次根式的加法对C进行判断,根据二次根式的乘法法则对D进行判断.【详解】解:A、=5,所以A选项的计算错误;B、,所以B选项的计算正确;C、,所以C选项的计算错误;D、,所以D选项的计算错误;故选B.【点睛】本题考查了二次根式的混合运算、二次根式的化简;熟练掌握二次根式的化简与运算是解决问题的关键.7、C【分析】连接、过作于,先求出、值,再求出、值,求出、值,代入求出即可.【详解】连接、,过作于∵在中,,,∴,∴在中,∴在中,∴,∵的垂直平分线∴同理∵∴∴在中,∴同理∴故选:C.【点睛】本题考查垂直平分线的性质、含直角三角形的性质,利用特殊角、垂直平分线的性质添加辅助线是解题关键,通过添加的辅助线将复杂问题简单化,更容易转化边.8、B【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①,正确;②,错误;③,错误;④,正确.故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.9、A【分析】据分式的基本性质,x,y的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【详解】解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、,B、,C、,D、,故选A.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.10、D【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【详解】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2−b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.

故选:D.【点睛】本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.11、D【分析】分别根据同底数幂的乘除法以及幂的乘方与积的乘方运算法则逐一判断即可.【详解】解:A.a3•a⁴=a7,故本选项不合题意;B.(ab2)3=a6b6,故本选项不合题意;C.a10÷a2=a8,故本选项不合题意;D.(﹣a4)2=a8,正确,故本选项符合题意.故选:D.【点睛】本题考查同底数幂的乘除计算,幂的乘方,积的乘方计算,关键在于熟练基础计算方法.12、D【详解】选项A、B中的图形是轴对称图形,只有1条对称轴;选项C中的图形不是轴对称图形;选项D中的图形是轴对称图形,有2条对称轴.故选D.二、填空题(每题4分,共24分)13、2【解析】先估算出5+7的整数部分,然后可求得a的值,然后再估算出5-7的整数部分,然后可求得b的值,最后代入计算即可.【详解】解:∵4<7<9,

∴2<7<2.

∴a=5+7-7=7-2,b=5-7-2=2-7.

∴a+b=7-2+2-7=2.故答案为:2.【点睛】本题主要考查的是估算无理数的大小,求得a,b的值是解题的关键.14、1【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此即可求解.【详解】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵点P关于OA的对称点为C,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=1,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=1.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=1.【点睛】此题主要考查轴对称--最短路线问题,综合运用了等边三角形的知识.正确作出图形,理解△PMN周长最小的条件是解题的关键.15、1【分析】根据中线的性质即可求解.【详解】∵点、分别是、的中点,∴AD是△ABC的中线,∴∴DE是△ADC的中线,∴故答案为:1.【点睛】此题主要考查中线的性质,解题的关键是熟知中线平分三角形的面积.16、1【分析】根据等腰三角形的定义、圆的性质(同圆的半径相等)分情况讨论即可得.【详解】设点A坐标为,则依题意,有以下三种情况:(1)当时,是等腰三角形如图1,以点B为圆心、BA为半径画圆,除点A外,与坐标轴有三个交点由圆的性质可知,三点均满足要求,且是等边三角形(2)当时,是等腰三角形如图2,以点A为圆心、AB为半径画圆,除点B外,与坐标轴有三个交点由圆的性质可知,三点均满足要求,且是等边三角形(3)当时,是等腰三角形如图3,作的角平分线,交x轴于点则,是等腰三角形,即点满足要求由勾股定理得,则点坐标为作,交y轴于点则,是等边三角形,即点满足要求坐标为综上,符合条件的点共有1个:(其中为同一点)即符合条件的等腰三角形有1个故答案为:1.【点睛】本题考查了等腰三角形的定义、圆的性质,依据等腰三角形的定义,正确分3种情况讨论是解题关键.17、21【分析】根据同底数幂相乘逆用运算法则,即可得到答案.【详解】解:,故答案为:21.【点睛】本题考查了同底数幂相乘,解题的关键是熟练掌握运算法则进行计算.18、【分析】由方程组的解互为相反数,得到,代入方程组计算即可求出的值.【详解】由题意得:,

代入方程组得,由①得:③,

③代入②得:,

解得:,

故答案为:.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.三、解答题(共78分)19、【分析】无理数的运算法则与有理数的运算法则是一样的.注意:表示a的算术平方根.在进行根式的运算时要先化简再计算可使计算简便.【详解】原式【点睛】此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.20、(1)见解析,A′(-2,4),B′(3,-2),C′(-3,1);(2)【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,然后列式计算即可得解.【详解】解:(1)如图,A′(-2,4),B′(3,-2),C′(-3,1);(2)S△ABC=6×6-×5×6-×6×3-×1×3,=36-15-9-,=.【点睛】本题考查了利用轴对称变换作图,三角形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.21、(1)甲单独完成需20天,乙单独完成需30天;(2)该工程施工费用是168000元.【分析】(1)设甲单独完成需天,根据“甲队单独施工30天和乙队单独施工45天的工作量相同”列方程即可求出结论;(2)设甲、乙合做完成需要天,利用“甲乙合做的工作量=1”列出方程,求出y,即可求出结论.【详解】解:(1)设甲单独完成需天,依题意得解得:=20经检验=20是原方程的解乙单独完成需20+10=30天答:甲单独完成需20天,乙单独完成需30天.(2)设甲、乙合做完成需要天,依题意得解得:=12总费用为:(8000+6000)×12=168000(元)答:该工程施工费用是168000元.【点睛】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.22、(1)乙队单独完成需2天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.【分析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.【详解】解:(1)设乙队单独完成需x天.根据题意,得:.解这个方程得:x=2.经检验,x=2是原方程的解.∴乙队单独完成需2天.(2)设甲、乙合作完成需y天,则有,解得,y=36;①甲单独完成需付工程款为:60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为:36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23、(1)每台A种设备0.3万元,每台B种设备1.3万元;(3)1.【解析】试题分析:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元,根据数量=总价÷单价结合花3万元购买A种设备和花7.3万元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(3)设购买A种设备m台,则购买B种设备(30﹣m)台,根据总价=单价×数量结合总费用不高于13万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.试题解析:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元,根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论