版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列命题中是假命题的是(▲)A.对顶角相等 B.两直线平行,同旁内角互补C.同位角相等 D.平行于同一条直线的两条直线平行2.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和673.若不等式组,只有三个正整数解,则a的取值范围为()A. B. C. D.4.在中,,则()A. B. C. D.5.同一直角坐标系中,一次函数y=kx+b的图象如图所示,则满足y≥0的x取值范围是()A.x≤-2 B.x≥-2 C.x<-2 D.x>-26.下列因式分解正确的是()A. B.C. D.7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的底角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75° D.()n•85°8.如图,图形中,具有稳定性的是()A. B. C. D.9.如图,点D在AB上,点E在AC上,AB=AC添加下列一个条件后,还不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.∠B=∠C D.BE=CD10.如图,把△ABC绕着点C顺时针旋转m°,得到△EDC,若点A、D、E在一条直线上,∠ACB=n°,则∠ADC的度数是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,将沿着过中点的直线折叠,使点落在边上的处,称为第1次操作,折痕到的距离记为,还原纸片后,再将沿着过中点的直线折叠,使点落在边上的处,称为第2次操作,折痕到的距离记为,按上述方法不断操作下去…经过第2020次操作后得到的折痕到的距离记为,若,则的值为______.12.如图,∠AOB=30°,OP平分∠AOB,PC∥OB交OA于C,PD⊥OB于D.如果PC=8,那么PD等于____________.13.若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.14.如图,图①是一块边长为1,周长记为的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的)后,得图③,④,…,记第块纸板的周长为,则=_____.15.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.16.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是4,则图中阴影部分图形的面积为__________.17.已知,则代数式______.18.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.三、解答题(共66分)19.(10分)如图,△ABC中,∠ACB=90°,∠A=40°,CD、BE分别是△ABC的高和角平分线,求∠BCD、∠CEB的度数.20.(6分)已知△ABC中,∠A=2∠B,∠C=∠B+20°求△ABC的各内角度数.21.(6分)如图,已知点坐标为点坐标为点坐标为.(1)在图中画出关于轴对称的,写出点的坐标:,,;(2)求的面积.22.(8分)在复习课上,老师布置了一道思考题:如图所示,点,分别在等边的,边上,且,,交于点.求证:.
同学们利用有关知识完成了解答后,老师又提出了下列问题,请你给出答案并说明理由.(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?(2)若将题中的点,分别移动到,的延长线上,是否仍能得到?23.(8分)已知:如图,相交于点.若,求的长.24.(8分)谁更合理?某种牙膏上部圆的直径为2.6cm,下部底边的长为4cm,如图,现要制作长方体的牙膏盒,牙膏盒底面是正方形,在手工课上,小明、小亮、小丽、小芳制作的牙膏盒的高度都一样,且高度符合要求.不同的是底面正方形的边长,他们制作的边长如下表:制作者小明小亮小丽小芳正方形的边长2cm2.6cm3cm3.4cm(1)这4位同学制作的盒子都能装下这种牙膏吗?()(2)若你是牙膏厂的厂长,从节约材料又方便取放牙膏的角度来看,你认为谁的制作更合理?并说明理由.25.(10分)若一个三角形的三边长、、满足,你能根据已知条件判断这个三角形的形状吗?26.(10分)已知2是的平方根,是的立方根,求的值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据对顶角的性质、平行线的性质、平行公理的推论逐项判断即可.【详解】A、对顶角相等,则此项是真命题B、两直线平行,同旁内角互补,则此项是真命题C、同位角不一定相等,则此项是假命题D、平行于同一条直线的两条直线平行,则此项是真命题故选:C.【点睛】本题考查了对顶角的性质、平行线的性质、平行公理的推论,掌握相交线与平行线的相关知识是解题关键.2、B【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案3、A【解析】解不等式组得:a<x≤3,因为只有三个整数解,∴0≤a<1;故选A.4、A【解析】根据三角形的内角和为180°,即可解得∠A的度数.【详解】∵三角形的内角和为180°∴∵∴故答案为:A.【点睛】本题考查了三角形内角的度数问题,掌握三角形的内角之和为180°是解题的关键.5、A【分析】根据图象找到一次函数图象在x轴上方时x的取值范围.【详解】解:表示一次函数在x轴上方时,x的取值范围,根据图象可得:.故选:A.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用函数图象解不等式的方法.6、D【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案.【详解】A没有把化为因式积的形式,所以A错误,B从左往右的变形不是恒等变形,因式分解是恒等变形,所以B错误,C变形也不是恒等变形所以错误,D化为几个因式的积的形式,是因式分解,所以D正确.故选D.【点睛】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键.7、C【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以An为顶点的底角度数.【详解】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以An为顶点的底角度数是()n﹣1×75°.故选:C.【点睛】本题考查等腰三角形的性质和三角形外角的性质,解题的关键是根据这两个性质求出∠DA2A1,∠EA3A2及∠FA4A3的度数,探索其规律.8、B【解析】根据三角形具有稳定性的性质解答即可.【详解】所有图形里,只有三角形具有稳定性.故选B.【点睛】本题考查了三角形的稳定性.掌握三角形的稳定性是解答本题的关键.9、D【分析】判定全等三角形时,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.【详解】解:A、∵在△ABE和△ACD中∴△ABE≌△ACD(SAS),故本选项不符合题意;B、∵AB=AC,BD=CE,∴AD=AE,在△ABE和△ACD中∴△ABE≌△ACD(SAS),故本选项不符合题意;C、∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故本选项不符合题意;D、根据AB=AC,BE=CD和∠A=∠A不能推出△ABE≌△ACD,故本选项符合题意;故选:D.【点睛】本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.10、A【分析】根据旋转的性质即可得到∠ACD和∠CAD的度数,再根据三角形内角和定理进行解答即可.【详解】∵将△ABC绕点C顺时针旋转m°得到△EDC.
∴∠DCE=∠ACB=n°,∠ACE=m°,AC=CE,
∴∠ACD=m°-n°,
∵点A,D,E在同一条直线上,
∴∠CAD=(180°-m°),
∵在△ADC中,∠ADC+∠DAC+∠DCA=180°,
∴∠ADC=180°-∠CAD-∠ACD=180°-(180°-m°)-(m°-n°)=90°+n°-m°=(90+n-m)°,
故选:A.【点睛】本题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理,关键是根据旋转的性质和三角形内角和解答.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.二、填空题(每小题3分,共24分)11、【分析】根据中点的性质及折叠的性质可得DA=DA₁=DB,从而可得∠ADA₁=2∠B,结合折叠的性质可得.,∠ADA₁=2∠ADE,可得∠ADE=∠B,继而判断DE//
BC,得出DE是△ABC的中位线,证得AA₁⊥BC,AA₁=2,由此发现规律:同理…于是经过第n次操作后得到的折痕Dn-1
En-1到BC的距离,据此求得的值.【详解】解:如图连接AA₁,由折叠的性质可得:AA₁⊥DE,DA=
DA₁
,A₂、A₃…均在AA₁上又∵
D是AB中点,∴DA=
DB
,
∵DB=
DA₁
,
∴∠BA₁D=∠B
,
∴∠ADA₁=∠B+∠BA₁D=2∠B,
又∵∠ADA₁
=2∠ADE
,
∴∠ADE=∠B
∵DE//BC,
∴AA₁⊥BC
,
∵h₁=1
∴AA₁
=2,
∴
同理:;
;
…
∴经过n次操作后得到的折痕Dn-1En-1到BC的距离∴【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.12、1【分析】根据角平分线的性质,角平分线上的点到两角的距离相等,因而过P作PE⊥OA于点E,则PD=PE,因为PC∥OB,根据三角形的外角的性质得到:∠ECP=∠COP+∠OPC=30°,在直角△ECP中求得PD的长.【详解】解:过P作PE⊥OA于点E,
∵OP平分∠AOB,PD⊥OB于D∴PD=PE,∵PC∥OB∴∠OPC=∠POD,
又∵OP平分∠AOB,∠AOB=30°,
∴∠OPC=∠COP=15°,
∠ECP=∠COP+∠OPC=30°,
在直角△ECP中,则PD=PE=1.
故答案为:1.【点睛】本题主要考查了角平分线的性质和含有30°角的直角三角形的性质,正确作出辅助线是解决本题的关键.13、1【解析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】180°-144°=36°,360°÷36°=1,∴这个多边形的边数是1,故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.14、【分析】根据等边三角形的性质(三边相等)求出等边三角形的面积P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.【详解】解:P1=1+1+1=3,P2=1+1+=,P3=1+++×3=,P4=1+++×2+×3=,…∴P3-P2===,P4-P3=,则Pn-Pn-1=,故答案为【点睛】本题考查了等边三角形的性质;通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题是关键.15、1【分析】先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),
所以小明回家的速度是每分钟步行10÷10=1(米).
故答案为:1.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.16、1【分析】由平移的性质结合已知条件易得,四边形ACFD是平行四边形,且CF=AD=4,这样结合∠B=90°,AB=10即可求得阴影部分的面积了.【详解】∵△DEF是由△ABC沿BC方向平移4个单位长度得到的,∴AD∥CF,且AD=CF=4,∴四边形ACFD是平行四边形,∵∠B=90°,AB=10,∴S平行四边形ACFD=CF·AB=4×10=1.故答案为:1.【点睛】熟悉“平移的性质,并能结合已知条件得到四边形ACFD是平行四边形,CF=4”是解答本题的关键.17、1【分析】x2-1=x,则x2-x=1,x3-x2=x,x3-2x2+2020=x3-x2-x2+2020,即可求解.【详解】x2-1=x,则x2-x=1,
x3-x2=x,
x3-2x2+2020=x3-x2-x2+2020=x-x2+2020=-1+2020=1,
故答案为1.【点睛】此题考查分解因式的实际运用,解题的关键是由x2-x=1推出x3-x2=x.18、1.【解析】试题分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.试题解析:设这个多边形是n边形.依题意,得n-3=10,∴n=1.故这个多边形是1边形考点:多边形的对角线.三、解答题(共66分)19、∠BCD=40°,∠CEB=65°.【分析】在Rt△ABC中求得∠ABC=50°,在由CD⊥AB,即∠BDC=90°知∠BCD=40°,根据BE平分∠ABC知∠CBE=∠ABC=25°,由∠CEB=90°-∠CBE可得答案.【详解】∵在△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=50°,∵CD⊥AB,∴∠BDC=90°,∴∠BCD=40°,∵BE平分∠ABC,∴∠CBE=∠ABC=25°,∴∠CEB=90°﹣∠CBE=65°.【点睛】本题主要考查三角形内角和定理,解题的关键是掌握三角形的内角和定理及角平分线的定义.20、∠A=80°;∠B=40°;∠C=60°.【分析】先设∠B=x,再用x表示出∠A与∠C,根据三角形内角和定理求出各角的度数即可得出正确的答案.【详解】解:在ΔABC中,∠A=2∠B,∠C=∠B+20°,设∠B=x,则∠A=2x,∠C=x+20,∠A+∠B+∠C=180,得x+(x+20)+2x=180,解得x=40∠A=80,∠B=40,∠C=60.故答案为:∠A=80,∠B=40,∠C=60【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和是180度是解答此题的关键.21、(1)作图见解析,,,;(2)14【分析】(1)分别找到A、B、C点关于y轴的对称点,顺次连接即可得到,再写出坐标即可;(2)用矩形面积减去三个直角三角形面积即可.【详解】(1)如图,,,(2)【点睛】本题考查网格作图,熟练掌握轴对称的定义是解题的关键.22、(1)真命题;(2)能,见解析【分析】(1)因为∠BQM=60°,所以∠QBA+∠BAM=60°,又因为∠QBA+∠CBN=60°,所以∠BAM=∠CBN,已知∠B=∠C,AB=AC,则ASA可判定△ABM≌△BCN,即BM=CN;(2)画出图形,易证CM=AN,和∠BAN=∠ACM=120°,即可证明△BAN≌△ACM,可得∠CAM=∠ABN,即可解题..【详解】解:(1)是真命题.证明:∵∠BQM=∠ABM=60°,∠BAM+∠ABM+∠AMB=180°,∠CBN+∠AMB+∠BQM=180°,
∴∠CBN=∠BAM,
∵在△ABM和△BCN中,,
∴△ABM≌△BCN,(ASA)
∴BM=CN;(2)能得到,理由如下∵∠BQM=60°,∴∠QBA+∠BAM=60°.∵∠QBA+∠CBN=60°,∴∠BAM=∠CBN.在△ABM和△BCN中,,∴△ABM≌△BCN(ASA).∴BM=CN.∵AB=AC,∴∠ACM=∠BAN=180°60°=120°,在△BAN和△ACM中,,∴△BAN≌△ACM(SAS).∴∠NBA=∠MAC,∴∠BQM=∠BNA+∠NAQ=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电子商务平台软件开发与运营服务合同2篇
- 网管业务培训课程设计
- 八年级历史下册复习提要课件
- 抽样调查课程设计
- 无主灯教学课程设计
- 花草移植课程设计
- 2024年艺术的语录
- 水源热泵课程设计
- 医务科护士处理医务事务
- 食品行业客服工作者感悟
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之15:“6策划-6.4创新组合”(雷泽佳编制-2025B0)
- 广东省广州市天河区2022-2023学年七年级上学期期末语文试题(含答案)
- 标准厂房施工方案
- DB32/T 4700-2024 蓄热式焚烧炉系统安全技术要求
- 国有企业普法培训课件
- 新能源小客车购车充电条件确认书
- 发明专利专利答辩模板
- 市政府副市长年道路春运工作会议讲话稿
- 铸铁镶铜闸门
- 大型塔器“立装成段整体就位”工法
- 联想集团内训师管理制度
评论
0/150
提交评论