2025届吉林省长春德惠市九上数学期末经典试题含解析_第1页
2025届吉林省长春德惠市九上数学期末经典试题含解析_第2页
2025届吉林省长春德惠市九上数学期末经典试题含解析_第3页
2025届吉林省长春德惠市九上数学期末经典试题含解析_第4页
2025届吉林省长春德惠市九上数学期末经典试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届吉林省长春德惠市九上数学期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.正三角形外接圆面积是,其内切圆面积是()A. B. C. D.2.如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接.若,,则的长的最小值为()A. B. C. D.3.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm24.已知关于的一元二次方程的两根为,,则一元二次方程的根为()A.0,4 B.-3,5 C.-2,4 D.-3,15.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25π B.65π C.90π D.130π7.如图,在Rt△ABC中,∠ACB=90°,AC=,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A. B. C. D.8.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.9.如图,在中,点为边中点,动点从点出发,沿着的路径以每秒1个单位长度的速度运动到点,在此过程中线段的长度随着运动时间的函数关系如图2所示,则的长为()A. B. C. D.10.已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.1811.下图中①表示的是组合在一起的模块,在②③④⑤四个图形中,是这个模块的俯视图的是()A.② B.③ C.④ D.⑤12.一种商品原价元,经过两次降价后每盒26元,设两次降价的百分率都为,则满足等式()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,点A,B,C都在格点上,过A,B,C三点作一圆弧,则圆心的坐标是_____.14.某剧场共有个座位,已知每行的座位数都相同,且每行的座位数比总行数少,求每行的座位数.如果设每行有个座位,根据题意可列方程为_____________.15.二次函数y=+2的顶点坐标为.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.17.如图所示,个边长为1的等边三角形,其中点,,,,…在同一条直线上,若记的面积为,的面积为,的面积为,…,的面积为,则______.18.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点.⑴求该反比例函数和一次函数的解析式;⑵在轴上找一点使最大,求的最大值及点的坐标;⑶直接写出当时,的取值范围.20.(8分)已知为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.21.(8分)解方程:(1)x2﹣1x+5=0(配方法)(2)(x+1)2=1x+1.22.(10分)如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.(1)当时,求的度数;(2)求证:;(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.23.(10分)如图,是线段上--动点,以为直径作半圆,过点作交半圆于点,连接.已知,设两点间的距离为,的面积为.(当点与点或点重合时,的值为)请根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究.(注:本题所有数值均保留一位小数)通过画图、测量、计算,得到了与的几组值,如下表:补全表格中的数值:;;.根据表中数值,继续描出中剩余的三个点,画出该函数的图象并写出这个函数的一条性质;结合函数图象,直接写出当的面积等于时,的长度约为____.24.(10分)阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有2个点,3个点,4个点,5个点,…,个点,其中任意三个点都不在同一条直线上经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们,设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)点数2345…示意图…直线条数1…请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为______;(2)若某同学按照本题中的方法,共画了28条直线,求该平面内有多少个已知点?25.(12分)一次知识竞赛中,有甲、乙、丙三名同学名次并列,但奖品只有两份,谁应该得到奖品呢?他们决定用抽签的方式来决定:取张大小、质地相同,分别标有数字的卡片,充分混匀后倒扣在桌子上,按甲、乙、丙的顺序,每人从中任意抽取一张,取后不放回.规定抽到号或号卡片的人得到奖品.求甲、乙两人同时得到奖品的概率.26.如图,一枚运载火箭从地面处发射,当火箭到达点时,从位于地面处的雷达站测得的距离是6,仰角为;1后火箭到达点,此时测得仰角为(所有结果取小数点后两位).(1)求地面雷达站到发射处的水平距离;(2)求这枚火箭从到的平均速度是多少?(参考数据:,,,,,)

参考答案一、选择题(每题4分,共48分)1、D【分析】△ABC为等边三角形,利用外接圆和内切圆的性质得∠OBC=30°,在Rt△OBD中,利用含30°的直角三角形三边的关系得到OD=OB,然后根据圆的面积公式得到△ABC的外接圆的面积与其内切圆的面积之比,即可得解.【详解】△ABC为等边三角形,AD为角平分线,⊙O为△ABC的内切圆,连OB,如图所示:∵△ABC为等边三角形,⊙O为△ABC的内切圆,∴点O为△ABC的外心,AD⊥BC,∴∠OBC=30°,在Rt△OBD中,OD=OB,∴△ABC的外接圆的面积与其内切圆的面积之比=OB2:OD2=4:1.∵正三角形外接圆面积是,∴其内切圆面积是故选:D.【点睛】本题考查了正多边形与圆:正多边有内切圆和外接圆,并且它们是同心圆.也考查了等边三角形的性质.2、A【分析】由可得∠APB=90°,根据AB是定长,由定长对定角可知P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,用DO减去圆的半径即可得出最小值.【详解】解:∵,∴∠APB=90°,∵AB=6是定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB得中点为O,连结DO,DO与半圆的交点是DP的长为最小值时的位置,如图所示:∵,,∴,由勾股定理得:DO=5,∴,即的长的最小值为2,故选A.【点睛】本题属于综合难题,主要考查了直径所对的角是圆周角的应用:由定弦对定角可得动点的轨迹是圆,发现定弦和定角是解题的关键.3、C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C4、B【分析】先将,代入一元二次方程得出与的关系,再将用含的式子表示并代入一元二次方程求解即得.【详解】∵关于的一元二次方程的两根为,∴或∴整理方程即得:∴将代入化简即得:解得:,故选:B.【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.5、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=BD.cos∠ACB=,故选B.6、B【解析】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.7、A【详解】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=,∴BC=AC•tan30°==2,∴S阴影=S△ABC﹣S扇形CBD==.故选A.【点睛】本题考查解直角三角形和扇形面积的计算,掌握公式正确计算是本题的解题关键.8、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC

∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.9、C【分析】根据图象和图形的对应关系即可求出CD的长,从而求出AD和AC,然后根据图象和图形的对应关系和垂线段最短即可求出CP⊥AB时AP的长,然后证出△APC∽△ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.【详解】解:∵动点从点出发,线段的长度为,运动时间为的,根据图象可知,当=0时,y=2∴CD=2∵点为边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=时,y最小,即CP最小根据垂线段最短∴此时CP⊥AB,如下图所示,此时点P运动的路程DA+AP=所以此时AP=∵∠A=∠A,∠APC=∠ACB=90°∴△APC∽△ACB∴即解得:AB=在Rt△ABC中,BC=故选C.【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.10、A【解析】试题分析:由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:∵8+8+5=1.∴这个三角形的周长为1.故选A.考点:等腰三角形的性质.11、A【详解】②是该几何体的俯视图;③是该几何体的左视图和主视图;④、⑤不是该几何体的三视图.故选A.【点睛】从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.12、C【分析】等量关系为:原价×(1-下降率)2=26,把相关数值代入即可.【详解】解:第一次降价后的价格为45(1-x),

第二次降价后的价格为45(1-x)·(1-x)=45(1-x)2,

∴列的方程为45(1-x)2=26,

故选:C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.二、填空题(每题4分,共24分)13、(2,1)【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【详解】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,1).故答案为:(2,1).【点睛】本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”.14、x(x+12)=1【分析】设每行有个座位,根据等量关系,列出一元二次方程,即可.【详解】设每行有个座位,则总行数为(x+12)行,根据题意,得:x(x+12)=1,故答案是:x(x+12)=1.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.15、(1,2).【解析】试题分析:由二次函数的解析式可求得答案.∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2).故答案为(1,2).考点:二次函数的性质.16、1【解析】作DH⊥x轴于H,如图,

当y=0时,-3x+3=0,解得x=1,则A(1,0),

当x=0时,y=-3x+3=3,则B(0,3),

∵四边形ABCD为正方形,

∴AB=AD,∠BAD=90°,

∴∠BAO+∠DAH=90°,

而∠BAO+∠ABO=90°,

∴∠ABO=∠DAH,

在△ABO和△DAH中∴△ABO≌△DAH,

∴AH=OB=3,DH=OA=1,

∴D点坐标为(1,1),

∵顶点D恰好落在双曲线y=上,

∴a=1×1=1.故答案是:1.17、【分析】由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上,可作出直线BB1.易求得△ABC1的面积,然后由相似三角形的性质,易求得S1的值,同理求得S2的值,继而求得Sn的值.【详解】如图连接BB1,B1B2,B2B3;由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上.∴S△ABC1=×1×=∵B

B1∥AC1,∴△BD1B1∽△AC1D1,△BB1C1为等边三角形则C1D1=BD1=;,△C1B1D1中C1D1边上的高也为;∴S1=××=;同理可得;则=,∴S2=××=;同理可得:;∴=,Sn=××=.【点睛】此题考查了相似三角形的判定与性质以及等边三角形的性质.此题难度较大,属于规律性题目,注意辅助线的作法,注意数形结合思想的应用.18、【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x-2图象上的点个数,即可求出所求的概率.【详解】列表得:

-112-1---(1,-1)(2,-1)1(-1,1)---(2,1)2(-1,2)(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则故答案为:【点睛】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共78分)19、⑴,;⑵的最大值为,;⑶或.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.【详解】⑴.∵在反比例函数上∴∴反比例函数的解析式为把代入可求得∴.把代入为解得.∴一次函数的解析式为.⑵的最大值就是直线与两坐标轴交点间的距离.设直线与轴的交点为.令,则,解得,∴令,则,,∴∴,∴的最大值为.⑶根据图象的位置和图象交点的坐标可知:当时的取值范围为;或.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.20、(1)(3﹣m,0);(2);(3)见解析【分析】(1)AO=AC−OC=m−3,用线段的长度表示点A的坐标;(2)是等腰直角三角形,因此也是等腰直角三角形,即可得到OD=OA,则D(0,m−3),又由P(1,0)为抛物线顶点,用待定系数法设顶点式,计算求解即可;(3)过点Q作QM⊥AC与点M,过点Q作QN⊥BC与点N,设点Q的坐标为,运用相似比求出FC,EC长的表达式,而AC=m,代入即可.【详解】解:(1)由B(3,m)可知OC=3,BC=m,∴AC=BC=m,OA=m﹣3,∴点A的坐标为(3﹣m,0)(2)∵∠ODA=∠OAD=45°∴OD=OA=m﹣3,则点D的坐标是(0,m﹣3)又抛物线的顶点为P(1,0),且过B、D两点,所以可设抛物线的解析式为:得:∴抛物线的解析式为:(3)证明:过点Q作QM⊥AC与点M,过点Q作QN⊥BC与点N,设点Q的坐标为,则∵QM∥CE∴△PQM∽△PEC则∵QN∥FC∴△BQN∽△BFC则又∵AC=m=4∴即为定值8【点睛】本题主要考查了点的坐标,待定系数法求二次函数解析式,相似三角形的判定与性质,合理做出辅助线,运用相似三角形的性质求出线段的长度是解题的关键.21、(2)x2=3,x2=2;(2)x2=﹣2,x2=3【分析】(2)先变形为x2-2x=-3,再把方程两边都加上9得

x2-2x+9=-3+9,则

(x-3)2=4,然后用直接开平方法解方程即可.

(2)先移项,然后提取公因式(x+2)进行因式分解;【详解】解:(2)x2﹣2x=﹣3,x2﹣2x+32=﹣3+32,(x﹣3)2=4,x=3±2,所以x2=3,x2=2.(2)(x+2)2﹣2(x+2)=0,(x+2)(x+2﹣2)=0,x+2=0或x+2﹣2=0,所以x2=﹣2,x2=3.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22、(1)75°;(2)证明见解析;(3)或或.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数;(2)连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB,再根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出△ABC∽△PBA,得出答案即可;(3)记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值.【详解】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=30°,∴∠B=75°,(2)如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB,∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°-∠APB-∠B,∠ACB=180°-∠BAC-∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB,由(1)可知PA=PB,∴△ABC∽△PBA,∴,∴AB2=BC•PB;(3)如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=,∴MR=,(一)当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;(二)如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;(三)如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB=,∴PQ=,∴MQ=;(四)如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或.【点睛】此题主要考查了圆的综合题、等腰三角形的性质、三角形中位线定理,勾股定理,圆周角定理的综合应用,解决问题的关键是作辅助线构造直角三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.23、(1)3.1,9.3,7.3;(2)见解析;(3)或.【分析】D(1)如图1,当x=1.5时,点C在C处,x=2.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论