版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西北海市九上数学期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()A.8 B.9 C.10 D.112.已知和的半径长分别是方程的两根,且,则和的位置关系为()A.相交 B.内切 C.内含 D.外切3.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点4.抛物线y=4x2﹣3的顶点坐标是()A.(0,3) B.(0,﹣3) C.(﹣3,0) D.(4,﹣3)5.如图,已知⊙O的直径为4,∠ACB=45°,则AB的长为()A.4 B.2 C.4 D.26.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A. B. C. D.7.如图,点A、B、C、D均在边长为1的正方形网格的格点上,则sin∠BAC的值为()A. B.1 C. D.8.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球9.△ABC中,∠ACB=90°,CD⊥AB于D,已知:cos∠A=,则sin∠DCB的值为()A. B. C. D.10.如图,点A、B、C在上,∠A=72°,则∠OBC的度数是()A.12° B.15° C.18° D.20°二、填空题(每小题3分,共24分)11.如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为_____.12.在Rt△ABC中,,,,则的值等于__.13.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.14.已知扇形的半径为,圆心角为,则扇形的弧长为__________.15.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:完成引体向上的个数78910人数1234这10人完成引体向上个数的中位数是___________16.已知菱形中,,,边上有点点两动点,始终保持,连接取中点并连接则的最小值是_______.17.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为_____.18.二次函数的顶点坐标___________.三、解答题(共66分)19.(10分)如图,反比例函数y=(x>0)与直线AB:交于点C,点P是反比例函数图象上一点,过点P作x轴的垂线交直线AB于点Q,连接OP,OQ.(1)求反比例函数的解析式;(2)点P在反比例函数图象上运动,且点P在Q的上方,当△POQ面积最大时,求P点坐标.20.(6分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.21.(6分)某商业银行为提高存款额,经过最近的两次提高利息,使一年期存款的年利率由1.96%提高至2.25%,平均每次增加利息的百分率是多少?(结果写成a%的形式,其中a保留小数点后两位)22.(8分)将矩形纸片沿翻折,使点落在线段上,对应的点为,若,求的长.23.(8分)把一根长为米的铁丝折成一个矩形,矩形的一边长为米,面积为S米,(1)求S关于的函数表达式和的取值范围(2)为何值时,S最大?最大为多少?24.(8分)如图直角坐标系中,为坐标原点,抛物线交轴于点,过作轴,交抛物线于点,连结.点为抛物线上上方的一个点,连结,作垂足为,交于点.(1)求的长;(2)当时,求点的坐标;(3)当面积是四边形面积的2倍时,求点的坐标.25.(10分)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC,(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,=,求CE的长.26.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
参考答案一、选择题(每小题3分,共30分)1、D【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.2、A【解析】解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.圆心距<两个半径和,说明两圆相交.【详解】解:解方程x2-6x+8=0得:
x1=2,x2=4,
∵O1O2=5,x2-x1=2,x2+x1=6,
∴x2-x1<O1O2<x2+x1.
∴⊙O1与⊙O2相交.
故选A.【点睛】此题综合考查一元二次方程的解法及两圆的位置关系的判断,关键解出两圆半径.3、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.4、B【分析】根据抛物线的顶点坐标为(0,b),可以直接写出该抛物线的顶点坐标,【详解】解:抛物线,该抛物线的顶点坐标为,故选:B.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.5、D【分析】连接OA、OB,根据同弧所对的圆周角是圆心角的一半,即可求出∠AOB=90°,再根据等腰直角三角形的性质即可求出AB的长.【详解】连接OA、OB,如图,∵∠AOB=2∠ACB=2×45°=90°,∴△AOB为等腰直角三角形,∴AB=OA=2.故选:D.【点睛】此题考查的是圆周角定理和等腰直角三角形的性质,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.6、B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【详解】解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形.则是等腰直角三角形,设,则,,正八边形的边长是.则正方形的边长是.则正八边形的面积是:,阴影部分的面积是:.飞镖落在阴影部分的概率是,故选:.【点睛】本题考查了几何概率的求法:一般用阴影区域表示所求事件(A);首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.7、A【分析】连接BC,由勾股定理得AC2=BC2=12+22=5,AB2=12+32=10,则AC=BC,AC2+BC2=AB2,得出△ABC是等腰直角三角形,则∠BAC=45°,即可得出结果.【详解】连接BC,如图3所示;由勾股定理得:AC2=BC2=12+22=5,AB2=12+32=10,∴AC=BC,AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠BAC=45°,∴sin∠BAC=,故选:A.【点睛】本题考查了勾股定理、勾股定理的逆定理、等腰直角三角形的判定与性质等知识;熟练掌握勾股定理和勾股定理的逆定理是解题的关键.8、B【解析】根据事件的类型特点及性质进行判断.【详解】A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选B.【点睛】本题考查的是随机事件的特性,熟练掌握随机事件的特性是本题的解题关键.9、C【分析】设,根据三角函数的定义结合已知条件可以求出AC、CD,利用∠BCD=∠A,即可求得答案.【详解】∵,
∴,
∵,
∴设,则,
∴,
∵,
∴,,
∴,
∴.故选:C.【点睛】本题考查直角三角形的性质、三角函数的定义、勾股定理、同角的余角相等等知识,熟记性质是解题的关键.10、C【分析】根据圆周角定理可得∠BOC的度数,根据等腰三角形的性质即可得答案.【详解】∵点A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故选:C.【点睛】本题考查圆周角定理及等腰三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.二、填空题(每小题3分,共24分)11、πa【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长=,那么勒洛三角形的周长为【详解】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长=,∴勒洛三角形的周长为故答案为πa.【点睛】本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.12、【分析】首先由勾股定理求出另一直角边AC的长度,再利用锐角三角函数的定义求解.【详解】∵在Rt△ABC中,∠C=90°,AB=10,BC=8,
∴,
∴,故答案为:.【点睛】本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边.13、2【详解】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,解得r=2cm.考点:圆锥侧面展开扇形与底面圆之间的关系.14、【分析】直接根据弧长公式即可求解.【详解】∵扇形的半径为8cm,圆心角的度数为120°,
∴扇形的弧长为:.故答案为:.【点睛】本题考查了弧长的计算.解答该题需熟记弧长的公式.15、1【分析】将数据由小排到大,再找到中间的数值,即可求得中位数,奇数个数中位数是中间一个数,偶数个数中位数是中间两个数的平均数。【详解】解:将10个数据由小到大排序:7、8、8、1、1、1、10、10、10、10,处于这组数据中间位置的数是1、1,那么由中位数的定义可知,这组数据的中位数是(1+1)÷2=1.
所以这组同学引体向上个数的中位数是1.
故答案为:1.【点睛】本题为统计题,考查中位数的意义,解题的关键是准确认识表格.16、1【分析】过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.由菱形性质和可证明,进而可得,由BM最小值为BH即可求解.【详解】解:过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.∵在菱形中,,,∴,,∴,∵,,∴,∴,又∵,∴,∴,又∵,∴,∴当BM最小时FG最小,根据点到直线的距离垂线段最短可知,BM的最小值等于BH,∵在菱形中,,∴又∵在Rt△CHD中,,∴,∴,∴AM的最小值为6,∴的最小值是1.故答案为:1.【点睛】本题考查了动点线段的最小值问题,涉及了菱形的性质、等腰三角形性质和判定、垂线段最短、中位线定理等知识点;将“两动点”线段长通过中位线转化为“一定一动”线段长求解是解题关键.17、x1=2,x2=1【分析】根据抛物线y=x2﹣1x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),可以求得m和k的值,然后代入题目中的方程,即可解答本题.【详解】解:∵抛物线y=x2﹣1x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),∴﹣9=22﹣1×2+m,﹣9=2k﹣13,解得,m=﹣5,k=2,∴抛物线为y=x2﹣1x﹣5,直线y=2x﹣13,∴所求方程为x2﹣1x﹣5=2(x﹣1)﹣11,解得,x1=2,x2=1,故答案为:x1=2,x2=1.【点睛】本题主要考查的是二次函数与一次函数的交点问题,交点既满足二次函数也满足一次函数,带入即可求解.18、(6,3)【分析】利用配方法将二次函数的解析式化成顶点式即可得出答案.【详解】由此可得,二次函数的顶点式为则顶点坐标为故答案为:.【点睛】本题考查了顶点式二次函数的性质,掌握二次函数顶点式的性质是解题关键.三、解答题(共66分)19、(1)y=;(2)P(2,2)【分析】(1)点C在一次函数上得:m=,点C在反比例函数上:,求出k即可.(2)动点P(m,),则点Q(m,﹣2),PQ=-+2,则△POQ面积=,利用-公式求即可.【详解】解:(1)将点C的坐标代入一次函数表达式得:m=,故点C,将点C的坐标代入反比例函数表达式得:,解得k=4,故反比例函数表达式为y=;(2)设点P(m,),则点Q(m,﹣2),则△POQ面积=PQ×xP=(﹣m+2)•m=﹣m2+m+2,∵﹣<0,故△POQ面积有最大值,此时m==2,故点P(2,2).【点睛】本题考查反比例函数解析式,及面积最大值问题,关键是会利用一次函数求点C坐标,利用动点P表示Q,求出面积函数,用对称轴公式即可解决问题.20、(1)y关于x的函数关系式是y=﹣x2+16x;(2)当x是6或11时,围成的养鸡场面积为61平方米;(3)不能围成面积为71平方米的养鸡场;理由见解析.【解析】(1)根据矩形的面积公式进行列式;把y的值代入(1)中的函数关系,求得相应的x值即可.把y的值代入(1)中的函数关系,求得相应的x值即可.【详解】解:(1)设围成的矩形一边长为x米,则矩形的邻边长为:32÷2﹣x.依题意得y=x(32÷2﹣x)=﹣x2+16x.答:y关于x的函数关系式是y=﹣x2+16x;(2)由(1)知,y=﹣x2+16x.当y=61时,﹣x2+16x=61,即(x﹣6)(x﹣11)=1.解得x1=6,x2=11,即当x是6或11时,围成的养鸡场面积为61平方米;(3)不能围成面积为71平方米的养鸡场.理由如下:由(1)知,y=﹣x2+16x.当y=71时,﹣x2+16x=71,即x2﹣16x+71=1因为△=(﹣16)2﹣4×1×71=﹣24<1,所以该方程无解.即:不能围成面积为71平方米的养鸡场.考点:1、一元二次方程的应用;2、二次函数的应用;3、根的判别式21、平均每次增加利息的百分率约为7.14%【分析】设平均每增加利息的百分率为x,则两次增加利息后,利率为1.96%(1+x)2,由题意可列出方程,求解x即可.【详解】解:设平均每增加利息的百分率为x,由题意,得1.96%(1+x)2=2.25%解方程得x=0.0714或-2.0714(舍去)故平均每次增加利息的百分率7.14%答:平均每次增加利息的百分率约为7.14%.【点睛】此题考查的是一元二次方程的应用,掌握增长率问题的公式是解决此题的关键.22、10【分析】设,根据三角函数表示出其它线段,最终表示出BE、AB,然后在三角形ABE中根据勾股定理即可求出AB.【详解】解:∵是矩形,沿翻折∴,BE=EF,∠AFE=∠B=∠D=,∴∠AFD+∠DAF=∠AFD+∠EFC=,∴∠DAF=∠EFC,∴,设,则∴,∴,∴AD=8k,∴,∴,∴,∴,∵,∴,∴,∴.【点睛】此题考查了折叠的性质、矩形的性质、三角函数的定义以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.23、(1)S=-+2x(0<x<2);(2)x=1时,面积最大,最大为1米2【分析】(1)根据矩形周长为米,一边长为x,得出另一边为2-x,再根据矩形的面积公式即可得出答案;(2)根据(1)得出的关系式,利用配方法进行整理,可求出函数的最大值,从而得出答案.【详解】解:(1)∵矩形的一边长为x米,∴另一边长为2-x米,∴S=x(2-x)=-x2+2x(0<x<2),即S=-x2+2x(0<x<2);(2)根据(1)得:S=-x2+2x=-(x-1)2+1,∴矩形一边长为1米时,面积最大为1米2,【点睛】本题考查的是二次函数的实际应用以及矩形面积的计算公式,关键是根据矩形的面积公式构建二次函数解决最值问题.24、(1)6;(2);(3)或【分析】(1)令x=0求得A的坐标,再根据轴,令y=3即可求解;(2)证明,则,即可求解;(3)当的面积是四边形的面积的2倍时,则,,即可求解.【详解】解:(1)∵抛物线交轴于点,∴,∵轴,∴B的纵坐标为3,设B的横坐标为a,则,解得,(舍),∴,∴;(2)设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动解聘合同范本
- 薪酬数据分析和管理实务学习通超星期末考试答案章节答案2024年
- 西方经济学(微观+宏观)学习通超星期末考试答案章节答案2024年
- 生鲜加盟合同范本
- 衢州龙游县各级机关单位录用公务员真题
- 2023年银川市妇联公益性岗位招聘考试真题
- 合同范本保密条例
- 2023年上海特奥竞赛训练中心招聘考试真题
- 奖杯制作合同范本
- 2023年甘肃省劳务办招聘考试真题
- 心脏骤停急救-课件
- XX医院康复科建设方案
- 出差申请表(模板)
- 中药材技术创新中心的可行性研究报告
- 有机合成化学(山东联盟)知到章节答案智慧树2023年青岛科技大学
- 商标法题库1(答案)
- TMF自智网络白皮书4.0
- 电视剧《国家孩子》观影分享会PPT三千孤儿入内蒙一段流淌着民族大爱的共和国往事PPT课件(带内容)
- 所水力除焦设备介绍
- 改革开放英语介绍-课件
- pet考试历届真题和答案
评论
0/150
提交评论