湖南省岳阳市汨罗市沙溪中学2022年数学九上期末学业水平测试试题含解析_第1页
湖南省岳阳市汨罗市沙溪中学2022年数学九上期末学业水平测试试题含解析_第2页
湖南省岳阳市汨罗市沙溪中学2022年数学九上期末学业水平测试试题含解析_第3页
湖南省岳阳市汨罗市沙溪中学2022年数学九上期末学业水平测试试题含解析_第4页
湖南省岳阳市汨罗市沙溪中学2022年数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列算式正确的是()A. B. C. D.2.正五边形内接于圆,连接分别与交于点,,连接若,下列结论:①②③四边形是菱形④;其中正确的个数为()A.个 B.个 C.个 D.个3.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三连个月投放单车数量的月平均增长率为x,则所列方程正确的是()A.1000(1+x)2=440 B.1000(1+x)2=1000C.1000(1+2x)=1000+440 D.1000(1+x)2=1000+4404.二次函数图象的一部分如图所示,顶点坐标为,与轴的一个交点的坐标为(-3,0),给出以下结论:①;②;③若、为函数图象上的两点,则;④当时方程有实数根,则的取值范围是.其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个5.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是A. B. C. D.6.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x,则下列方程正确的是()A.100(1+2x)=150 B.100(1+x)2=150C.100(1+x)+100(1+x)2=150 D.100+100(1+x)+100(1+x)2=1507.一组数据由五个正整数组成,中位数是3,且惟一众数是7,则这五个正整数的平均数是()A.4 B.5 C.6 D.88.如图,中,将绕点逆时针旋转后得到,点经过的路径为则图中涂色部分的面积为()A. B. C. D.9.如图是抛物线y=a(x+1)2+2的一部分,该抛物线在y轴右侧部分与x轴的交点坐标是()A.(,0) B.(1,0) C.(2,0) D.(3,0)10.如图,在平面直角坐标系中,正方形OABC的顶点O、B的坐标分别是(0,0),(2,0),则顶点C的坐标是()A.(1,1) B.(﹣1,﹣1) C.(1,﹣1) D.(﹣1,1)二、填空题(每小题3分,共24分)11.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是______.12.如图,正方形和正方形的边长分别为3和1,点、分别在边、上,为的中点,连接,则的长为_________.13.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.14.己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.15.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.16.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程____________17.如图,在ABCD中,点E是AD边上一点,AE:ED=1:2,连接AC、BE交于点F.若S△AEF=1,则S四边形CDEF=_______.18.已知如图,是的中位线,点是的中点,的延长线交于点A,那么=__________.三、解答题(共66分)19.(10分)装潢公司要给边长为6米的正方形墙面ABCD进行装潢,设计图案如图所示(四周是四个全等的矩形,用材料甲进行装潢;中心区是正方形MNPQ,用材料乙进行装潢).两种装潢材料的成本如下表:材料甲乙价格(元/米2)5040设矩形的较短边AH的长为x米,装潢材料的总费用为y元.(1)MQ的长为米(用含x的代数式表示);(2)求y关于x的函数解析式;(3)当中心区的边长不小于2米时,预备资金1760元购买材料一定够用吗?请说明理由.20.(6分)如图,在等腰三角形ABC中,于点H,点E是AH上一点,延长AH至点F,使.求证:四边形EBFC是菱形.21.(6分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.22.(8分)如图1,直线y=x与双曲线y=交于A,B两点,根据中心对称性可以得知OA=OB.(1)如图2,直线y=2x+1与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试证明:AC=BD;(2)如图3,直线y=ax+b与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试问:AC=BD还成立吗?(3)如果直线y=x+3与双曲线y=交于A,B两点,与坐标轴交点C,D两点,若DB+DC≤5,求出k的取值范围.23.(8分)在一个不透明的袋子里有1个红球,1个黄球和个白球,它们除颜色外其余都相同,从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该试验,经过大量试验后,发现摸到白球的频率稳定于0.5左右,求的值.24.(8分)已知关于的方程(1)当m取何值时,方程有两个实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.25.(10分)如图,于,以直径作,交于点恰有,连接.(1)如图1,求证:;(2)如图2,连接分别交,于点连接试探究与之间的数量关系,并说明理由;(3)在(2)的基础上,若,求的长.26.(10分)某市有、两个公园,甲、乙、丙三位同学随机选择其中一个公园游玩,请利用树状图求三位同学恰好在同一个公园游玩的概率.

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据有理数的减法、绝对值的意义、相反数的意义解答即可.【详解】A.,故不正确;B.,正确;C.,故不正确;D.,故不正确;故选B.【点睛】本题考查了有理数的运算,熟练掌握有理数的减法法则、绝对值的意义、相反数的意义是解答本题的关键.2、B【分析】①先根据正五方形ABCDE的性质求得∠ABC,由等边对等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,求得∠CDF=∠CFD,即可求得答案;②证明△ABF∽△ACB,得,代入可得BF的长;③先证明CF∥DE且,证明四边形CDEF是平行四边形,再由证得答案;④根据平行四边形的面积公式可得:,即可求得答案.【详解】①∵五方形ABCDE是正五边形,,

∴,

∴,

∴,

同理得:,

∵,,

∴,

∵,∴,∴,则,

∴,

∵,

∴,

∴,

∴;

所以①正确;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB,

∴△ABF∽△ACB,

∴,∵,∴,∵,∴,∴,解得:(负值已舍);所以②正确;③∵,,

∴,

∴CF∥DE,

∵,

∴四边形CDEF是平行四边形,∵,∴四边形CDEF是菱形,所以③正确;④如图,过D作DM⊥EG于M,

同①的方法可得,,

∴,,∴,所以④错误;综上,①②③正确,共3个,故选:B【点睛】本题考查了相似三角形的判定和性质,勾股定理,圆内接正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握圆内接正五边形的性质是解题的关键.3、D【分析】根据题意可以列出相应的一元二次方程,从而可以解答本题得出选项.【详解】解:由题意可得,1000(1+x)2=1000+440,故选:D.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,是关于增长率的问题.4、D【分析】由二次函数的图象可知,再根据对称轴为x=-1,得出b=2a<0,进而判断①,当x=-2时可判断②正确,然后根据抛物线的对称性以及增减性可判断③,再根据方程的根与抛物线与x交点的关系可判断④.【详解】解:∵抛物线开口向下,交y轴正半轴∴∵抛物线对称轴为x=-1,∴b=2a<0∴①正确;当x=-2时,位于y轴的正半轴故②正确;点的对称点为∵当时,抛物线为增函数,∴③正确;若当时方程有实数根,则需与x轴有交点则二次函数向下平移的距离即为t的取值范围,则的取值范围是,④正确.故选:D.【点睛】本题考查的知识点是二次函数图象及其性质,熟悉二次函数的图象上点的坐标特征以及求顶点坐标的公式是解此题额关键.5、C【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.6、B【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)1=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“-”.7、A【分析】根据题意,五个正整数中3是中位数,唯一众数是7,可以得知比3大的有2个数,比3小的有2个数,且7有2个,然后求出这五个数的平均数即可.【详解】由五个正整数知,中位数是3说明比3大的有2个数,比3小的有2个数,唯一众数是7,则7有2个,所以这五个正整数分别是1、2、3、7、7,计算平均数是(1+2+3+7+7)÷5=4,故选:A.【点睛】本题考查了数据的收集与处理,中位数,众数,平均数的概念以及应用,掌握数据的收集与处理是解题的关键.8、A【分析】先根据勾股定理得到AB,再根据扇形的面积公式计算出,由旋转的性质得到Rt△ADE≌Rt△ACB,于是.【详解】∵∠ACB=90°,AC=BC=1,

∴,

∴,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,

∴Rt△ADE≌Rt△ACB,∴.

故选:A【点睛】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.9、B【解析】根据图表,可得抛物线y=a(x+1)2+2与x轴的交点坐标为(−3,0);将(−3,0)代入y=a(x+1)2+2,可得a(−3+1)2+2=0,解得a=−;所以抛物线的表达式为y=−(x+1)2+2;当y=0时,可得−(x+1)2+2=0,解得x1=1,x2=−3,所以该抛物线在y轴右侧部分与x轴交点的坐标是(1,0).故选B.10、C【详解】解:由图可知,点B在第四象限.各选项中在第四象限的只有C.故选C.二、填空题(每小题3分,共24分)11、【解析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:将-1、-2、-3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为.故答案为.【点睛】本题考查概率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.12、【分析】延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.【详解】解:延长GE交AB于点O,作PH⊥OE于点H.

则PH∥AB.

∵P是AE的中点,

∴PH是△AOE的中位线,

∴PH=OA=×(3-1)=1.

∵直角△AOE中,∠OAE=45°,

∴△AOE是等腰直角三角形,即OA=OE=2,

同理△PHE中,HE=PH=1.

∴HG=HE+EG=1+1=2.

∴在Rt△PHG中,PG=故答案是:.【点睛】本题考查了正方形的性质、勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.13、﹣1【详解】∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.14、【解析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.15、等【解析】根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,例如:.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.16、(30-2x)(20-x)=6×1.【解析】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.可列方程(30-2x)(20-x)=6×1.17、11【分析】先根据平行四边形的性质易得,根据相似三角形的判定可得△AFE∽△CFB,再根据相似三角形的性质得到△BFC的面积,,进而得到△AFB的面积,即可得△ABC的面积,再根据平行四边形的性质即可得解.【详解】解:∵AE:ED=1:2,∴AE:AD=1:3,∵AD=BC,∴AE:BC=1:3,∵AD∥BC,∴△AFE∽△CFB,∴,∴,∴S△BCF=9,∵,∴S△AFB=3,∴S△ACD=S△ABC=S△BCF+S△AFB=12,∴S四边形CDEF=S△ACD﹣S△AEF=12﹣1=11.故答案为11.【点睛】本题主要考查相似三角形的判定与性质,平行四边形的性质等,解此题的关键在于熟练掌握其知识点.18、1:1【分析】连结AP并延长交BC于点F,则S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,则S△CPE:S△ABC=1:1.【详解】解:连结AP并延长交BC于点F,∵DE△ABC的中位线,∴E是AC的中点,∴S△CPE=S△AEP,∵点P是DE的中点,∴S△AEP=S△ADP,∴S△CPE:S△ADE=1:2,∵DE是△ABC的中位线,∴DE∥BC,DE:BC=1:2,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△CPE:S△ABC=1:1.故答案为1:1.【点睛】本题考查三角形的中位线定理,相似三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识.三、解答题(共66分)19、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)预备资金4元购买材料一定够用,理由见解析【分析】(1)根据大正方形的边长减去两个小长方形的宽即可求解;

(1)根据总费用等于两种材料的费用之和即可求解;

(3)利用二次函数的性质和最值解答即可.【详解】解:(1)∵AH=GQ=x,AD=6,

∴MQ=6-1x;

故答案为:6-1x;(1)根据题意,得AH=x,AE=6﹣x,S甲=4S长方形AENH=4x(6﹣x)=14x﹣4x1,S乙=S正方形MNQP=(6﹣1x)1=36﹣14x+4x1.∴y=50(14x﹣4x1)+40(36﹣14x+4x1)=﹣40x1+140x+2.答:y关于x的函数解析式为y=﹣40x1+140x+2.(3)预备资金4元购买材料一定够用.理由如下:∵y=﹣40x1+140x+2=﹣40(x-3)1+1800,由﹣40<0,可知抛物线开口向下,在对称轴的左侧,y随x的增大而增大.由x-3=0可知,抛物线的对称轴为直线x=3.∴当x<3时,y随x的增大而增大.∵中心区的边长不小于1米,即6﹣1x≥1,解得x≤1,又x>0,∴0<x≤1.当x=1时,y=﹣40(x-3)1+1800=﹣40(1-3)1+1800=4,∴当0<x≤1时,y≤4.∴预备资金4元购买材料一定够用.答:预备资金4元购买材料一定够用.【点睛】此题主要考查了二次函数的应用以及配方法求最值和正方形的性质等知识,正确得出各部分的边长是解题关键.20、见解析.【分析】根据等腰三角形的三线合一可得BH=HC,结合已知条件,从而得出四边形EBFC是平行四边形,再根据得出四边形EBFC是菱形.【详解】证明:,,∴四边形EBFC是平行四边形又,∴四边形EBFC是菱形.【点睛】本题考查了菱形的判定和性质,以及等腰三角形的性质,熟练掌握相关的知识是解题的关键.21、(1)补全图形见解析;(2)90;直径所对的圆周角是直角.【分析】(1)根据题中得方法依次作图即可;(2)直径所对的圆周角是直角,据此填写即可.【详解】(1)补全图形如图(2)∵直径所对的圆周角是直角,∴∠OAP=∠OBP=90°,故答案为:90;直径所对的圆周角是直角,【点睛】本题主要考查了尺规作图以及圆周角性质,熟练掌握相关方法是解题关键.22、(1)见解析;(2)成立,见解析;(3)k≤2【分析】(1)如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.证明四边形ACFE,四边形BDEF都是平行四边形即可解决问题.(2)证明方法类似(1).(3)由题意CD=3,推出BD≤2,求出BD=2时,k的值即可判断.【详解】解:(1)如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE=S△AEF=,∵BF∥x轴,∴S△BEF=S△OBF=,∴S△AEF=S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(2)如图1中,如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE=S△AEF=,∵BF∥x轴,∴S△BEF=S△OBF=,∴S△AEF=S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(3)如图2中,∵直线y=x+3与坐标轴交于C,D,∴C(0,3),D(3,0),∴OC=OD=3,CD=3,∵CD+BD≤5,∴BD≤2,当BD=2时,∵∠CDO=45°,∴B(1,2),此时k=2,观察图象可知,当k≤2时,CD+BD≤5【点睛】本题考查一次函数与反比例函数的解题,关键在于熟记基础知识,结合图形运用性质.23、2【分析】根据“摸到白球的频率稳定于0.5左右”利用概率公式列方程计算可得;【详解】解:根据题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论