版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示,△ABC内接于⊙O,∠C=45°.AB=4,则⊙O的半径为()A. B.4C. D.52.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()A.1:4 B.1:5 C.2: D.1:3.一元二次方程的二次项系数、一次项系数和常数项分别是()A.3,2,1 B.3,2,-1 C.3,-2,1 D.3,-2,-14.如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,随的增大而增大;④一元二次方程的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有()A.个 B.个 C.个 D.个5.在中,=90〫,,则的值是()A. B. C. D.6.若,则的值是()A.1 B.2 C.3 D.47.如图,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,则BC的值为()A.8 B.9 C.10 D.128.下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨9.下列命题中,属于真命题的是()A.对角线互相垂直的四边形是平行四边形 B.对角线互相垂直平行的四边形是菱形C.对角线互相垂直且相等的四边形是矩形 D.对角线互相平分且相等的四边形是正方形10.如图,点在以为直径的上,若,,则的长为()A.8 B.6 C.5 D.11.抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.012.下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.打开电视机,它正在播放动画片C.早上的太阳从西方升起D.400人中有两个人的生日在同一天二、填空题(每题4分,共24分)13.已知的半径点在内,则_________(填>或=,<)14.如图,在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC=__________.15.用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是_____cm.16.b和2的比例中项是4,则b=__.17.如图,请补充一个条件_________:,使△ACB∽△ADE.18.如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段弧,三段圆弧围成的曲边三角形称为勒洛三角形,若这个等边三角形的边长为3,那么勒洛三角形(曲边三角形)的周长为_____.三、解答题(共78分)19.(8分)如图,一次函数的图象和反比例函数的图象相交于两点.(1)试确定一次函数与反比例函数的解析式;(2)求的面积;(3)结合图象,直接写出使成立的的取值范围.20.(8分)已知为的外接圆,点是的内心,的延长线交于点,交于点.(1)如图1,求证:.(2)如图2,为的直径.若,求的长.21.(8分)有甲乙两个不透明的布袋,甲布袋装有个形状和重量完全相同的小球,分别标有数字和;乙布袋装有个形状和重量完全相同的小球,分别标有数字,和.先从甲布袋中随机取出一个小球,将小球上标有的数字记作;再从乙布袋中随机取出一个小球,再将小球标有的数字记作.(1)用画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)若从甲、乙两布袋中取出的小球上面的数记作点的坐标,求点在一次函数图象上的概率是多少?22.(10分)方方驾驶小汽车匀速地从地行驶到地,行驶里程为千米,设小汽车的行驶时间为(单位:小时),行驶速度为(单位:千米/小时),且全程速度限定为不超过千米/小时.(1)求关于的函数表达式,并写出自变量的取值范围;(2)方方上午点驾驶小汽车从地出发;①方方需在当天点分至点(含点分和点)间到达地,求小汽车行驶速度的范围;②方方能否在当天点分前到达地?说明理由.23.(10分)如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)24.(10分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?25.(12分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值.26.如图,、、、分别为反比例函数与图象上的点,且轴,轴,与相交于点,连接、.(1)若点坐标,点坐标,请直接写出点、点、点的坐标;(2)连接、,若四边形是菱形,且点的坐标为,请直接写出、之间的数量关系式;(3)若、为动点,与是否相似?为什么?
参考答案一、选择题(每题4分,共48分)1、A【解析】试题解析:连接OA,OB.∴在中,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.2、C【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'=,∴P'B=PB=,∴P′A:P′B=2:,故选:C.【点睛】本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.3、D【解析】根据一元二次方程一般式的系数概念,即可得到答案.【详解】一元二次方程的二次项系数、一次项系数和常数项分别是:3,-2,-1,故选D.【点睛】本题主要考查一元二次方程一般式的系数概念,掌握一元二次方程一般式的系数,是解题的关键.4、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【详解】解:抛物线与轴交于点,其对称轴为直线抛物线与轴交于点和,且由图象知:,,故结论①正确;抛物线与x轴交于点故结论②正确;当时,y随x的增大而增大;当时,随的增大而减小结论③错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论④正确;当时,故结论⑤正确;抛物线与轴交于点和,,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论⑥成立;故选C.【点睛】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.5、A【分析】根据同角三角函数关系:+求解.【详解】解:在Rt△ABC中,∠C=90°,,∵+,∴,∴=故选:A【点睛】本题考查了同角三角函数的关系的应用,能知道是解题的关键.6、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.【点睛】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.7、D【解析】试题分析:由DE∥BC可推出△ADE∽△ABC,所以.因为AD=5,BD=10,DE=4,所以,解得BC=1.故选D.考点:相似三角形的判定与性质.8、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、任意购买一张电影票,座位号是奇数是随机事件;B、明天晚上会看到太阳是不可能事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、三天内一定会下雨是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【分析】直接利用平行四边形、矩形、菱形、正方形的判定方法分别判断得出答案.【详解】解:A、对角线互相垂直的四边形是平行四边形,错误,不合题意B、对角线互相垂直的平行四边形是菱形,正确,是真命题;C、对角线互相平分且相等的四边形是矩形,本选项错误,不合题意;D、对角线互相平分且相等的四边形应是矩形,本选项错误,不合题意;故选:B.【点睛】此题主要考查了命题与定理,正确掌握特殊四边形的判定方法是解题关键.10、D【分析】根据直径所对圆周角是直角,可知∠C=90°,再利用30°直角三角形的特殊性质解出即可.【详解】∵AB是直径,∴∠C=90°,∵∠A=30°,∴,.故选D.【点睛】本题考查圆周角的性质及特殊直角三角形,关键在于熟记相关基础知识.11、D【分析】把x=0代入抛物线y=﹣2(x﹣1)2﹣3,即得抛物线y=﹣2(x﹣1)2﹣3与y轴的交点.【详解】当x=0时,抛物线y=﹣2(x﹣1)2﹣3与y轴相交,把x=0代入y=﹣2(x﹣1)2﹣3,求得y=-5,
∴抛物线y=﹣2(x﹣1)2﹣3与y轴的交点坐标为(0,-5).
故选:D.【点睛】此题考查了二次函数的性质,二次函数与y轴的交点坐标,解题关键在于掌握当x=0时,即可求得二次函数与y轴的交点.12、D【解析】一定会发生的事件为必然事件,即发生的概率是1的事件.根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、两条线段可以组成一个三角形是不可能事件;B、打开电视机,它正在播放动画片是随机事件;C、早上的太阳从西方升起是不可能事件;D、400人中有两个人的生日在同一天是不必然事件;故选:D.【点睛】本题考查的是必然事件.不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、<【分析】根据点与圆的位置关系,即可求解.【详解】解:的半径为点在内,.故答案为:.【点睛】本题考查的是点与圆的位置关系.14、1【分析】根据DE∥BC,得到△ADE∽△ABC,得到,即可求BC的长.【详解】解:∵AE:EC=2:3,
∴AE:AC=2:5,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∵DE=4,
∴BC=1.
故答案为:1.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.15、10【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【详解】设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10.【点睛】考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.16、1.【分析】根据题意,b与2的比例中项为4,也就是b:4=4:2,然后再进一步解答即可.【详解】根据题意可得:B:4=4:2,解得b=1,故答案为:1.【点睛】本题主要考查了比例线段,解题本题的关键是理解两个数的比例中项,然后列出比例式进一步解答.17、∠ADE=∠C或∠AED=∠B或【分析】由∠A是公共角,且DE与BC不平行,可得当∠ADE=∠C或∠AED=∠B或时,△ADE∽△ACB.【详解】①补充∠ADE=∠C,理由是:∵∠A是公共角,∠ADE=∠C,
∴△ADE∽△ACB.故答案为:∠ADE=∠C.②补充∠AED=∠B,理由是:∵A是公共角,∠AED=∠B,
∴△ADE∽△ACB.
③补充,理由是:∵∠A是公共角,,
∴△ADE∽△ACB.故答案为:∠ADE=∠C或∠AED=∠B或【点睛】本题考查了相似三角形的判定与性质.注意掌握判定定理的应用,注意掌握数形结合思想的应用.18、3π.【分析】利用弧长公式计算.【详解】曲边三角形的周长=33π.故答案为:3π.【点睛】本题考查了弧长的计算:弧长公式:l(弧长为l,圆心角度数为n,圆的半径为R).也考查了等边三角形的性质.三、解答题(共78分)19、(1)反比例函数的解析式为,一次函数的解析式为;(2)8;(3)或.【分析】(1)将点A代入反比例函数中求出反比例函数的解析式,再根据反比例函数求出点B的坐标,最后将A和B的坐标代入一次函数解析式中求出一次函数的解析式;(2)求出一次函数与x轴的交点坐标,再利用割补法得到,即可得出答案;(3)根据图像判断即可得出答案.【详解】解:(1)∵在反比例函数的图象上,∴,则反比例函数的解析式为.将代入,得,∴.将两点的坐标分别代入,得解得则一次函数的解析式为.(2)设一次函数的图象与轴的交点为.在中,令,得,∴,即,则.(3)∵即一次函数的图像在反比例函数的图像的上方∴或.【点睛】本题考查的是一次函数与反比例函数的综合,难度不高,需要熟练掌握一次函数与反比例函数的图像与性质.20、(1)证明见解析;(2)【分析】(1)连接半径,根据内心的性质、圆的基本性质以及三角形外角的性质求得,即可得证结论;(2)连接半径,由为的直径、点是的内心以及等腰三角形的三线合一可得、,然后依次解、即可得出结论.【详解】解:(1)证明:连接,如图:∵是的内心∴,∵∴∴∵∴(2)连接,如图:∵是直径,平分∴且∵,,∴在中,∴∴∵∴∴在中,∴由(1)可知,∴.故答案是:(1)证明见解析;(2)【点睛】本题考查了三角形内心的性质、圆的一些基本性质、三角形外角的性质、等腰三角形的性质、垂径定理、锐角三角函数以及勾股定理等知识点,难度不大,属于中档题型.21、(1)(1,﹣1),(1,0),(1,﹣3),(2,﹣1),(2,0),(2,﹣3);(2)【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得点(x,y)在一次函数y=-2x+1图象上的情况,然后直接利用概率公式求解即可求得答案.【详解】解:(1)画树状图得:则点可能出现的所有坐标:(1,﹣1),(1,0),(1,﹣3),(2,﹣1),(2,0),(2,﹣3);(2)∵在所有的6种等可能结果中,落在y=﹣2x+1图象上的有(1,﹣1)、(2,﹣3)两种结果,∴点(x,y)在一次函数y=﹣2x+1图象上的概率是【点睛】本题考查了列表法和树状图法求概率,一次函数图象上点的坐标特征,正确的画出树状图是解题的关键.22、(1);(2)①;②方方不能在当天点分前到达地.【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;
(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;
②8点至11点30分时间长为小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.【详解】解:(1),且全程速度限定为不超过120千米/时,关于的函数表达式为:.(2)①点至点分时间长为小时,点至点时间长为小时将代入得;将代入得,小汽车行驶速度的范围为:.②方方不能在当天点分前到达地.理由如下:点至点分时间长为小时,将代入中,得千米/时,超速了.所以方方不能在当天点分前到达地.【点睛】本题是反比例函数在行程问题中的应用,根据时间速度和路程的关系可以求解,本题属于中档题.23、28.3海里【分析】过B作BD⊥AP于D,由已知条件求出AB=40,∠P=45°,在Rt△ABD中求出,在Rt△BDP中求出PB即可.【详解】解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40海里,∠P=75°-30°=45°,在Rt△ABD中,∵AB=40,∠A=30°,∴海里,在Rt△BDP中,∵∠P=45°,∴(海里).答:此时海监船与黄岩岛P的距离BP的长约为28.3海里.【点睛】此题主要考查解直角三角形的应用-方向角问题,根据已知得出△PDB为等腰直角三角形是解题关键.24、(1)(,x为整数),(,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元【分析】(1)由图可知当时,,当时,利用待定系数法可求出解析式;(2)设生猪饲养场月利润为W,分段讨论函数的最值,进行比较即可得出最大利润及月份.【详解】解:(1)当时,;当时,设,将(4,140),(12,220)代入得,解得∴∴y与x的函数关系式为:(,x为整数),(,x为整数)(2)设生猪饲养场月利润为W,当(x为整数)时,,因为,W随x的增大而减小,所以当x取最小值1时,万元当(x为整数)时,,因为,所以当时,万元;综上所述,该饲养场一月份的利润最大,最大利润是203万元【点睛】本题考查了待定系数法求一次函数解析式,以及一次函数和二次函数的最值问题,熟练掌握待定系数法和二次函数的最值求法是解题的关键.25、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,∠BAD=90°,又由DE⊥AM于点E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省上饶市2024-2025学年度第一学期八年级上册生物期末绿色评价试卷(含答案)
- 安徽省芜湖市2024-2025学年高一上学期期末教学质量监控历史试卷(含答案)
- 11年1月货币银行学试卷与答案
- 棉纱原料仓库项目可行性研究报告写作模板-申批备案
- 数学-辽宁省大连市2024-2025学年高三上学期期末双基测试卷及答案
- 2024青苔离婚经济补偿协议书2篇
- 2024版服务协议续签格式样本版
- 福建省南平市金桥学校2021-2022学年高一语文联考试卷含解析
- 2024铝扣板吊顶工程节能评估与验收合同协议3篇
- 2025厂房租赁居间服务及市场调研协议3篇
- 中试部培训资料
- 【可行性报告】2024年第三方检测相关项目可行性研究报告
- 藏医学专业生涯发展展示
- 2024政务服务综合窗口人员能力与服务规范考试试题
- JT∕T 1477-2023 系列2集装箱 角件
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 幼儿园“值日生”工作开展论文
- 光伏电站继电保护运行规程
- 承兑汇票台帐模版
- 地下管道顶管施工方案(非常全)
- 有色金属工业安装工程质量检验评定标准(共1004页)
评论
0/150
提交评论