版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m﹣8,n),则n的值为()A.8 B.12 C.15 D.162.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点,.若反比例函数经过点C,则k的值等于()A.10 B.24 C.48 D.503.如图,在Rt△ABC中,CD是斜边AB上的中线,已知AC=3,CD=2,则cosA的值为()A. B. C. D.4.在平面直角坐标系中,反比例函数的图象经过第一、三象限,则的取值范围是()A. B. C. D.5.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4) B.(3,3) C.(3,1) D.(4,1)6.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.77.已知,若,则它们的周长之比是()A.4:9 B.16:81C.9:4 D.2:38.下列命题是真命题的是()A.如果|a|=|b|,那么a=bB.平行四边形对角线相等C.两直线平行,同旁内角互补D.如果a>b,那么a2>b29.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形 B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴 D.圆的对称中心是它的圆心10.如图,在中,,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似图形,使得的边长是的边长的2倍.设点的坐标是,则点的坐标是()A. B. C. D.二、填空题(每小题3分,共24分)11.一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,1.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是_________.12.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.13.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.14.如图,点是反比例函数图象上的两点,轴于点,轴于点,作轴于点,轴于点,连结,记的面积为,的面积为,则___________(填“>”或“<”或“=”)15.如图,点在双曲线上,且轴于,若的面积为,则的值为__________.16.把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是.17.将抛物线向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.18.点与关于原点对称,则__________.三、解答题(共66分)19.(10分)计算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣120.(6分)改善小区环境,争创文明家园.如图所示,某社区决定在一块长()16,宽()9的矩形场地上修建三条同样宽的小路,其中两条与平行,另一条与平行,其余部分种草.要使草坪部分的总面积为112,则小路的宽应为多少?21.(6分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+1.(1)若从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7,11,19,23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,22.(8分)如图,已知反比例函数的图像与一次函数的图像交于A(-1,),B在(,-3)两点.(1)求的值;(2)直接写出使一次函数值大于反比例函数值时x的取值范围.23.(8分)如图,一次函数和反比例函数的图象相交于两点,点的横坐标为1.(1)求的值及,两点的坐标(1)当时,求的取值范围.24.(8分)对于平面直角坐标系中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.(1)当⊙O的半径为2时,①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)=________;②如果直线与⊙O互为“可及图形”,求b的取值范围;(2)⊙G的圆心G在轴上,半径为1,直线与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.25.(10分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.26.(10分)抛物线与轴交于A,B两点,与轴交于点C,连接BC.(1)如图1,求直线BC的表达式;(2)如图1,点P是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB面积最大时,一动点Q从点P从出发,沿适当路径运动到轴上的某个点G处,再沿适当路径运动到轴上的某个点H处,最后到达线段BC的中点F处停止,求当△PCB面积最大时,点P的坐标及点Q在整个运动过程中经过的最短路径的长;(3)如图2,在(2)的条件下,当△PCB面积最大时,把抛物线向右平移使它的图象经过点P,得到新抛物线,在新抛物线上,是否存在点E,使△ECB的面积等于△PCB的面积.若存在,请求出点E的坐标,若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由题意b2﹣4c=0,得b2=4c,又抛物线过点A(m,n),B(m﹣8,n),可知A、B关于直线x=对称,所以A(+4,n),B(﹣4,n),把点A坐标代入y=x2+bx+c,化简整理即可解决问题.【详解】解:由题意b2﹣4c=0,∴b2=4c,又∵抛物线过点A(m,n),B(m﹣8,n),∴A、B关于直线x=对称,∴A(+4,n),B(﹣4,n),把点A坐标代入y=x2+bx+c,n=(+4)2+b(+4)+c=b2+1+c,∵b2=4c,∴n=1.故选:D.【点睛】本题考查二次函数的性质,关键在于熟悉性质,灵活运用.2、C【分析】由菱形的性质和锐角三角函数可求点,将点C坐标代入解析式可求k的值.【详解】解:如图,过点C作于点E,∵菱形OABC的边OA在x轴上,点,∴,∵.∴,∴∴点C坐标∵若反比例函数经过点C,∴故选C.【点睛】本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C坐标.3、A【分析】利用直角三角形的斜边中线与斜边的关系,先求出AB,再利用直角三角形的边角关系计算cosA.【详解】解:∵CD是Rt△ABC斜边AB上的中线,
∴AB=2CD=4,∴cosA==.故选A.【点睛】本题考查了直角三角形斜边的中线与斜边的关系、锐角三角函数.掌握直角三角形斜边的中线与斜边的关系是解决本题的关键.在直角三角形中,斜边的中线等于斜边的一半.4、B【分析】根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】反比例函数的图象经过第一、三象限故选B.【点睛】本题考查了反比例函数的性质:当时,图象分别分布在第一、三象限;当时,图象分别分布在第二、四象限.5、A【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.6、D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.7、A【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,AC:DF=4:9,
∴△ABC与△DEF的相似比为4:9,
∴△ABC与△DEF的周长之比为4:9,
故选:A.【点睛】此题考查相似三角形性质,掌握相似三角形周长的比等于相似比是解题的关键.8、C【解析】根据绝对值的定义,平行线的性质,平行四边形的性质,不等式的性质判断即可.【详解】A、如果|a|=|b|,那么a=±b,故错误;B、平行四边形对角线不一定相等,故错误;C、两直线平行,同旁内角互补,故正确;D、如果a=1>b=﹣2,那么a2<b2,故错误;故选C.【点睛】本题考查了绝对值,不等式的性质,平行线的性质,平行四边形的性质,熟练掌握各性质定理是解题的关键.9、C【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大10、A【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据相似三角形的性质求出CE,B′E的长,得到点B′的坐标.【详解】作BD⊥x轴于D,B′E⊥x轴于E,∵点的坐标是,点的坐标是,∴CD=2,BD=,由题意得:C∽△,相似比为1:2,∴,∴CE=4,B′E=1,∴点B′的坐标为(3,-1),故选:A.【点睛】本题考查了位似变换、坐标与图形性质,熟练掌握位似变换的性质是解答的关键.二、填空题(每小题3分,共24分)11、【分析】由题意通过列表求出p、q的所有可能,再由根的判别式就可以求出满足条件的概率.【详解】解:由题意,列表为:∵通过列表可以得出共有6种情况,其中能使关于x的方程有实数根的有3种情况,∴P满足关于x的方程有实数根为.故答案为:.【点睛】本题考查列表法或树状图求概率的运用,根的判别式的运用,解答时运用列表求出所有可能的情况是关键.12、2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.13、1,,【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,
∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,
∴,∴,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.
∴,∴,∴DP=;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴,∴,∴DP=;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。综上所述,满足条件的DP的值为1,,.【点睛】本题考查了相似变换,利用分类讨论得出相似三角形是解题的关键,注意不要漏解.14、=【分析】连接OP、OQ,根据反比例函数的几何意义,得到,由OM=AP,OB=NQ,得到,即可得到.【详解】解:如图,连接OP、OQ,则∵点P、点Q在反比例函数的图像上,∴,∵四边形OMPA、ONQB是矩形,∴OM=AP,OB=NQ,∵,,∴,∴,∴;故答案为:=.【点睛】本题考查了反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义判断面积相等.15、【分析】设点A坐标为(x,y),由反比例函数的几何意义得,根据的面积为,即可求出k的值.【详解】解:设点A的坐标为:(x,y),∴,∴,∴,∵反比例函数经过第二、四象限,则,∴故答案为:.【点睛】本题考查了反比例函数的性质,以及反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义进行解题.16、【解析】试题分析:根据抛物线的平移规律:左加右减,上加下减,可知:把抛物线向下平移2个单位得,再向右平移1个单位,得.考点:抛物线的平移.17、y=5(x+2)2【分析】根据二次函数平移的性质求解即可.【详解】抛物线的平移问题,实质上是顶点的平移,原抛物线y=顶点坐标为(O,O),向左平移2个单位,顶点坐标为(-2,0),根据抛物线的顶点式可求平移后抛物线的解析式为y=5(x+2)2,故答案为y=5(x+2)2.【点睛】本题主要考查二次函数平移的性质,有口诀“左加右减,上加下减”,注意灵活运用.18、【分析】直接利用关于原点对称点的性质分析得出答案.【详解】解:∵点P(-4,7)与Q(1m,-7)关于原点对称,∴-4=-1m,解得:m=1,故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号是解题关键.三、解答题(共66分)19、1【分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【详解】原式=1×+3﹣+1﹣1=1.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20、小路的宽应为1.【解析】设小路的宽应为x米,那么草坪的总长度和总宽度应该为(16-2x),(9-x);那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x米,根据题意得:,解得:,.∵,∴不符合题意,舍去,∴.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.21、(1);(2)【分析】(1)直接根据概率公式计算可得;
(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解:(1)因为7,11,19,23共有4个数,其中素数7只有1个,
所以从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是,
故答案为.(2)由题意画树状图如下:由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)1;(2)x<-1或0<x<【分析】(1)将点B代入求出,再将点A代入即可求出的值;(2)由图像可得结论.【详解】(1)把B(,-3)代入中,得∴.∴.当时,.(2)如图,过点A、点B且平行于y轴及y轴所在的三条直线把平面分成了4部分由图象可得x<-1或0<x<时一次函数的图像在反比例函数图像的上方时,此时一次函数值大于反比例函数值,所以x的取值范围为x<-1或0<x<.【点睛】本题考查了反比例函数,将反比例函数的解析式与图像相结合是解题的关键.23、(1);(1)或【分析】(1)将x=1代入求得A(1,3),将A(1,3)代入求得,解方程组得到B点的坐标为(-6,-1);
(1)反比例函数与一次函数的交点坐标即可得到结论.【详解】解:(1)将代入,得,∴.将代入,得,∴,∴,解得(舍去)或.将代入,得,∴.(1)由图可知,当时,或.【点睛】此题考查反比例函数与一次函数的交点问题,正确的理解题意是解题的关键.24、(1)①1,3;②;(2),.【分析】(1)①根据图形M,N间的“近距离”的定义结合已知条件求解即可.②根据可及图形的定义作出符合题意的图形,结合图形作答即可;(2)分两种情况进行讨论即可.【详解】(1)①如图:根据近距离的定义可知:d(A,⊙O)=AC=2-1=1.过点B作BE⊥x轴于点E,则OB==5∴d(B,⊙O)=OB-OD=5-2=3.故答案为1,3.②∵由题意可知直线与⊙O互为“可及图形”,⊙O的半径为2,∴.∴.∴.(2)①当⊙G与边OD是可及图形时,d(O,⊙G)=OG-1,∴即-1≤m-1≤1解得:.②当⊙G与边CD是可及图形时,如图,过点G作GE⊥CD于E,d(E,⊙G)=EG-1,由近距离的定义可知d(E,⊙G)的最大值为1,∴此时EG=2,∵∠GCE=45°,∴GC=2.∵OC=5,∴OG=5-2.根据对称性,OG的最大值为5+2.∴综上所述,m的取值范围为:或【点睛】本题主要考查了圆的综合知识,正确理解“近距离”和“可及图形”的概念是解题的关键.25、(1)顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)AB=.【分析】(1)先把抛物线解析式配方为顶点式,即可得到结果;(2)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村合伙改造合同范例
- 商品买卖意向合同范例
- ktv转让合同范例
- 厂房电安装合同范例
- 口腔内科学练习题库(附答案)
- 经济金融基础习题与答案
- 分公司经营合同范例
- 废品回收运输合同范例
- 2025年益阳货运上岗证模拟考试
- 建筑公司采购合同范例
- 企业内部控制基本规范讲解 课件
- 数据结构课程设计电子课件
- 出境竹木草制品企业管理手册(精)
- 预防中心静脉导管感染相关知识考核试题及答案
- 人教版教材《原子的结构》推荐3课件
- 基于PLC的禽舍环境控制系统设计
- 对小学数学考试命题的探索与思考-课件
- 【详细版】小学英语人教新起点四年级下册Unit4Hobbies王露22一师一优课课例教案
- 奥沙利铂过敏反应
- 管棚质量检验评定表
- 供方评价表(试剂耗材)
评论
0/150
提交评论