吉林省长春市朝阳区2025届数学九上期末质量检测试题含解析_第1页
吉林省长春市朝阳区2025届数学九上期末质量检测试题含解析_第2页
吉林省长春市朝阳区2025届数学九上期末质量检测试题含解析_第3页
吉林省长春市朝阳区2025届数学九上期末质量检测试题含解析_第4页
吉林省长春市朝阳区2025届数学九上期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市朝阳区2025届数学九上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,,DE=6,则BC的长为()A.8 B.9 C.10 D.122.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个3.二次函数y=x1+bx﹣t的对称轴为x=1.若关于x的一元二次方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解,则t的取值范围是()A.﹣4≤t<5 B.﹣4≤t<﹣3 C.t≥﹣4 D.﹣3<t<54.如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是()A.1 B. C.2 D.5.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA= B.tanA= C.cosB= D.tanB=6.抛物线y=(x﹣1)2﹣2的顶点是()A.(1,﹣2) B.(﹣1,2) C.(1,2) D.(﹣1,﹣2)7.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.128.如图,一块含角的直角三角板绕点按顺时针方向,从处旋转到的位置,当点、点、点在一条直线上时,这块三角板的旋转角度为()A. B. C. D.9.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定10.已知正比例函数y1的图象与反比例函数y2图象相交于点A(2,4),下列说法正确的是(A.反比例函数y2的解析式是B.两个函数图象的另一交点坐标为(2,-4)C.当x<-2或0<x<2时,yD.正比例函数y1与反比例函数y2都随11.二次函数中与的部分对应值如下表所示,则下列结论错误的是()A.B.当时,的值随值的增大而减小C.当时,D.方程有两个不相等的实数根12.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援,海警船到达事故船处所需的时间大约为________小时(用根号表示).14.数据2,3,5,5,4的众数是____.15.如图,把直角尺的角的顶点落在上,两边分别交于三点,若的半径为.则劣弧的长为______.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).17.若(m+1)xm(m+2﹣1)+2mx﹣1=0是关于x的一元二次方程,则m的值是_____.18.若函数是正比例函数,则__________.三、解答题(共78分)19.(8分)已知关于的方程.(1)求证:无论为何值,该方程都有两个不相等的实数根;(2)若该方程的一个根为-1,则另一个根为.20.(8分)某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,,,车杆与所成的,图1中、、三点共线,图2中的座板与地面保持平行.问变形前后两轴心的长度有没有发生变化?若不变,请写出的长度;若变化,请求出变化量?(参考数据:,,)21.(8分)如图,在中,,为边上的中线,于点(1)求证:BD·AD=DE·AC.(2)若AB=13,BC=10,求线段DE的长.(3)在(2)的条件下,求的值.22.(10分)如图,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象相交于A,B两点,与x轴,y轴分别交于C,D两点,tan∠DCO=,过点A作AE⊥x轴于点E,若点C是OE的中点,且点A的横坐标为﹣1.,(1)求该反比例函数和一次函数的解析式;(2)连接ED,求△ADE的面积.23.(10分)如图,梯形ABCD中,,点在上,连与的延长线交于点G.(1)求证:;(2)当点F是BC的中点时,过F作交于点,若,求的长.24.(10分)已知:如图(1),射线AM∥射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC.(1)求证:△ADE∽△BEC;(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;(3)当AD+DE=AB=时.设AE=m,请探究:△BEC的周长是否与m值有关?若有关,请用含有m的代数式表示△BEC的周长;若无关,请说明理由.25.(12分)如图,△ABC中(1)请你利用无刻度的直尺和圆规在平面内画出满足PB2+PC2=BC2的所有点P构成的图形,并在所作图形上用尺规确定到边AC、BC距离相等的点P.(作图必须保留作图痕迹)(2)在(1)的条件下,连接BP,若BC=15,AC=14,AB=13,求BP的长.26.如图所示,在平面直角坐标系中,抛物线与轴相交于点,点,与轴相交于点,与抛物线的对称轴相交于点.(1)求该抛物线的表达式,并直接写出点的坐标;(2)过点作交抛物线于点,求点的坐标;(3)在(2)的条件下,点在射线上,若与相似,求点的坐标.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据相似三角形的性质可得,再根据,DE=6,即可得出,进而得到BC长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,又∵,DE=6,∴,∴BC=10,故选:C.【点睛】本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.2、A【解析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可:①∵2>0,∴图象的开口向上,故本说法错误;②图象的对称轴为直线x=3,故本说法错误;③其图象顶点坐标为(3,1),故本说法错误;④当x<3时,y随x的增大而减小,故本说法正确.综上所述,说法正确的有④共1个.故选A.3、A【解析】根据抛物线对称轴公式可先求出b的值,一元二次方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解相当于y=x1﹣bx与直线y=t的在﹣1<x<3的范围内有交点,即直线y=t应介于过y=x1﹣bx在﹣1<x<3的范围内的最大值与最小值的直线之间,由此可确定t的取值范围.【详解】解:∵抛物线的对称轴x==1,∴b=﹣4,则方程x1+bx﹣t=0,即x1﹣4x﹣t=0的解相当于y=x1﹣4x与直线y=t的交点的横坐标,∵方程x1+bx﹣t=0在﹣1<x<3的范围内有实数解,∴当x=﹣1时,y=1+4=5,当x=3时,y=9﹣11=﹣3,又∵y=x1﹣4x=(x﹣1)1﹣4,∴当﹣4≤t<5时,在﹣1<x<3的范围内有解.∴t的取值范围是﹣4≤t<5,故选:A.【点睛】本题主要考查了二次函数与一元二次方程之间的关系,一元二次方程的解相当于与直线y=k的交点的横坐标,解的数量就是交点的个数,熟练将二者关系进行转化是解题的关键.4、B【分析】连接,由矩形的性质得出,,,,由线段垂直平分线的性质得出,设,则,在中,由勾股定理得出方程,解方程即可.【详解】如图:连接,∵四边形是矩形,∴,,,,∵,∴,设,则,在中,由勾股定理得:,解得:,即;故选B.【点睛】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键.5、D【分析】根据三角函数的定义求解.【详解】解:∵在Rt△ABC中,∠ACB=90°,BC=1,AB=1.∴AC=,∴sinA=,tanA=,cosB=,tanB=.故选:D.【点睛】本题考查了解直角三角形,解答此题关键是正确理解和运用锐角三角函数的定义.6、A【分析】根据顶点式的坐标特点直接写出顶点坐标即可解决.【详解】解:∵y=(x﹣1)2﹣2是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,﹣2).故选:A.【点睛】本题考查了顶点式,解决本题的关键是正确理解二次函数顶点式中顶点坐标的表示方法.7、C【解析】连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【详解】如图连接AC,,,,菱形ABCD的周长,故选C.【点睛】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.8、C【分析】直接利用旋转的性质得出对应边,再根据三角板的内角的度数得出答案.【详解】解:∵将一块含30°角的直角三角板ABC绕点C顺时针旋转到△A'B'C,

∴BC与B'C是对应边,

∴旋转角∠BCB'=180°-30°=150°.

故选:C.【点睛】此题主要考查了旋转的性质,对应点与旋转中心所连线段的夹角等于旋转角,正确得出对应边是解题关键.9、A【解析】试题分析:设ax2+bx+c=1(a≠1)的两根为x1,x2,由二次函数的图象可知x1+x2>1,a>1,设方程ax2+(b﹣)x+c=1(a≠1)的两根为a,b再根据根与系数的关系即可得出结论.设ax2+bx+c=1(a≠1)的两根为x1,x2,∵由二次函数的图象可知x1+x2>1,a>1,∴﹣>1.设方程ax2+(b﹣)x+c=1(a≠1)的两根为a,b,则a+b=﹣=﹣+,∵a>1,∴>1,∴a+b>1.考点:抛物线与x轴的交点10、C【解析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可判断求解.【详解】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点∴正比例函数y1=2x∴两个函数图象的另一个角点为(-2,-4)∴A,B选项错误∵正比例函数y1=2x中,y随x的增大而增大,反比例函数y2=8∴D选项错误∵当x<-2或0<x<2时,y∴选项C正确故选:C.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.11、B【分析】根据表中各对应点的特征和抛物线的对称性求出抛物线的解析式即可判断.得出c=3,抛物线的对称轴为x=1.5,顶点坐标为(1,5),抛物线开口向下,【详解】解:由题意得出:,解得,∴抛物线的解析式为:抛物线的对称轴为x=1.5,顶点坐标为(1,5),抛物线开口向下∵a=-1<0,∴选项A正确;∵当时,的值先随值的增大而增大,后随随值的增大而增大,∴选项B错误;∵当时,的值先随值的增大而增大,因此当x<0时,,∴选项C正确;∵原方程可化为,,∴有两个不相等的实数根,选项D正确.故答案为B.【点睛】本题考查的知识点是二次函数的图象与性质,根据题目得出抛物线解析式是解题的关键.12、A【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.【详解】画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.二、填空题(每题4分,共24分)13、【分析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=(海里),然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=60海里,∴CD=AC=30海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°-37°=53°,∴BC=(海里),∴海警船到大事故船C处所需的时间大约为:20÷40=(小时).故答案为.【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.14、1【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵1是这组数据中出现次数最多的数据,∴这组数据的众数为1.故答案为:1.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.15、【分析】连接OB、OC,如图,先根据圆周角定理求出∠BOC的度数,再根据弧长公式计算即可.【详解】解:连接OB、OC,如图,∵∠A=45°,∴∠BOC=90°,∴劣弧的长=.故答案为:.【点睛】本题考查了圆周角定理和弧长公式的计算,属于基础题型,熟练掌握基本知识是解题关键.16、【分析】过点C作CD⊥AB于点D,在Rt△ABC中,求出AB长,继而求得CD长,继而根据扇形面积公式进行求解即可.【详解】过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2××4π×=.故答案为.【点睛】本题考查了圆锥的计算,正确求出旋转后圆锥的底面圆半径是解题的关键.17、﹣2或2【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(2)未知数的最高次数是2;(2)二次项系数不为2.由这两个条件得到相应的关系式,再求解即可.【详解】由题意得:解得m=−2或2.故答案为:﹣2或2.【点睛】考查一元二次方程的定义的运用,一元二次方程注意应着重考虑未知数的最高次项的次数为2,系数不为2.18、【分析】根据正比例函数的定义即可得出答案.【详解】∵函数是正比例函数∴-a+1=0解得:a=1故答案为1.【点睛】本题考查的是正比例函数,属于基础题型,正比例函数的表达式为:y=kx(其中k≠0).三、解答题(共78分)19、(1)见解析;(2)1或-1【分析】(1)根据因式分解法求出方程的两个解,再证明这两个解不相等即可;(2)根据(1)中的两个解分类讨论即可.【详解】(1)证明:原方程可化为或,∵∴无论为何值,该方程都有两个不相等的实数根.(2)当时,解得:m=1,即方程的另一个根为1;当m=-1时,则另一个根为,∴另一个根为1或-1故答案为:1或-1.【点睛】此题考查的是解一元二次方程和根据一元二次方程的一个根求另一个根,掌握因式分解法解一元二次方程和分类讨论的数学思想是解决此题的关键.20、的长度发生了改变,减少了.【分析】根据图形的特点构造直角三角形利用三角函数求出变化前BC与变化后的BC长度即可求解.【详解】图1:作DF⊥BC于F点,∵∴BF=EF=BDcos≈30×=18∴BC=2BF+CE图2:作DF⊥BC于F点,由图1可知∠DE’F=53°,∴∠DE’C=180°-∠DE’F=127°∵DE∥BC,∴∠E’DE=∠DE’F=53°根据题意可知DE’=DE,CE’=CE,连接CD,∴△DCE≌△DCE’∴∠DEC=∠DE’C=127°∴∠ECB=360°-∠DEC-∠DE’C-∠E’DE=53°,作EG⊥BC于G点∴BC=BF+FG+GC=BDcos+DE+CE∠ECB30×+30+40×=76-72=4cm,答:的长度发生了改变,减少了.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的运用.21、(1)见解析;(2);(3).【分析】(1)先利用等腰三角形的性质证明∠B=∠C,AD⊥BC,然后再证明△BDE∽△CAD即可;(2)利用勾股定理求出AD,再根据(1)的结论即可求出DE;(3)在Rt△BDE中,利用锐角三角函数求解即可.【详解】解:(1)证明:∵AB=AC,AD为BC边上的中线,∴∠B=∠C,AD⊥BC,即∠ADC=90°,又∵DE⊥AB于点E,即∠DEB=90°,∴∠ADC=∠DEB,∴△BDE∽△CAD,∴,∴BD·AD=DE·AC;(2)∵AD为BC边上的中线,BC=10,∴BD=CD=5,在Rt△ABD中,AB=13,BD=5,∴AD=,由(1)得BD·AD=DE·AC,又∵AC=AB=13,∴5×12=13·DE,∴DE=;(3)由(2)知,DE=,BD=5,∴在Rt△BDE中,.【点睛】本题考查了等腰三角形,相似三角形的判定与性质,勾股定理,锐角三角函数,熟练掌握各定理、性质及余弦的定义是解题的关键.22、(1)y=﹣x﹣3,y=﹣;(2)S△ADE=2.【分析】(1)根据题意求得OE=1,OC=2,Rt△COD中,tan∠DCO=,OD=3,即可得到A(-1,3),D(0,-3),C(-2,0),运用待定系数法即可求得反比例函数与一次函数的解析式;

(2)求得两个三角形的面积,然后根据S△ADE=S△ACE+S△DCE即可求得.【详解】(1)∵AE⊥x轴于点E,点C是OE的中点,且点A的横坐标为﹣1,∴OE=1,OC=2,∵Rt△COD中,tan∠DCO=,∴OD=3,∴A(﹣1,3),∴D(0,﹣3),C(﹣2,0),∵直线y=ax+b(a≠0)与x轴、y轴分别交于C、D两点,∴,解得,∴一次函数的解析式为y=﹣x﹣3,把点A的坐标(﹣1,3)代入,可得3=,解得k=﹣12,∴反比例函数解析式为y=﹣;(2)S△ADE=S△ACE+S△DCE=EC•AE+EC•OD=×2×3+=2.23、(1)证明见解析;(2)2cm【分析】(1)根据梯形的性质,利用平行线的性质得到,然后由相似三角形的判定得到结论;(2)根据点F是BC的中点,可得△CDF≌△BGF,进而根据全等三角形的性质得到CD=BG,然后由中位线的性质求解即可.【详解】(1)证明:∵梯形,,∴,∴.(2)由(1),又是的中点,∴,∴又∵,,∴,得.∴,∴.【点睛】此题主要考查了相似三角形的性质与判定,全等三角形的性质与判定及中位线的性质,比较复杂,关键是灵活利用平行线的性质解题.24、(1)详见解析;(2)详见解析;(3)的周长与m值无关,理由详见解析.【分析】(1)由直角梯形ABCD中∠A为直角,得到三角形ADE为直角三角形,可得出两锐角互余,再由DE与EC垂直,利用垂直的定义得到∠DEC为直角,利用平角的定义推出一对角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,利用两对对应角相等的两三角形相似可得证;(2)延长DE、CB交于F,证明△ADE≌△BFE,根据全等三角形的性质得到DE=FE,AD=BF由CE⊥DE,得到直线CE是线段DF的垂直平分线,由线段垂直平分线的性质得DC=FC.即可得到结论;(3)△BEC的周长与m的值无关,理由为:设AD=x,由AD+DE=a,表示出DE.在直角三角形ADE中,利用勾股定理列出关系式,整理后记作①,由AB﹣AE=EB,表示出BE,根据(1)得到:△ADE∽△BEC,由相似得比例,将各自表示出的式子代入,表示出BC与EC,由EB+EC+BC表示出三角形EBC的周长,提取a﹣m后,通分并利用同分母分式的加法法则计算,再利用平方差公式化简后,记作②,将①代入②,约分后得到一个不含m的式子,即周长与m无关.【详解】(1)∵直角梯形ABCD中,∠A=90°,∴∠ADE+∠AED=90°,又∵DE⊥CE,∴∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,又∵∠A=∠B=90°,∴△ADE∽△BEC;(2)延长DE、CB交于F,如图2所示.∵AD∥BC,∴∠A=∠EBF,∠ADE=∠F.∵E是AB的中点,∴AE=BE.在△ADE和△BFE中,∵∠A=∠EBF,∠ADE=∠F,AE=BE,∴△ADE≌△BFE,∴DE=FE,AD=BF.∵CE⊥DE,∴直线CE是线段DF的垂直平分线,∴DC=FC.∵FC=BC+BF=BC+AD,∴AD+BC=CD.(3)△BEC的周长与m的值无关,理由为:设AD=x,由AD+DE=AB=a,得:DE=a﹣x.在Rt△AED中,根据勾股定理得:AD2+AE2=DE2,即x2+m2=(a﹣x)2,整理得:a2﹣m2=2ax,…①在△EBC中,由AE=m,AB=a,得:BE=AB﹣AE=a﹣m.∵由(1)知△ADE∽△BEC,∴,即,解得:BC,EC,∴△BEC的周长=BE+BC+EC=(a﹣m)=(a﹣m)(1)=(a﹣m)•,…②把①代入②得:△BEC的周长=BE+BC+EC2a,则△BEC的周长与m无关.【点睛】本题是相似形综合题,涉及的知识有:相似三角形的判定与性质,勾股定理,平行线的判定与性质,分式的化简求值,利用了转化及整体代入的数学思想,做第三问时注意利用已证的结论.25、(1)见解析;(2)BP=【分析】(1)根据PB2+PC2=BC2得出P点所构成的圆以BC为直径,根据垂直平分线画法画出O点,补全⊙O,再作∠ACB的角平分线与⊙O的交点即是P点.(2)设⊙O与AC的交点为H,AH=x,得到AH、BH,根据题意求出OP∥AC,即可得出OP⊥BH

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论