2025届江苏省宿迁市泗阳县九上数学期末复习检测试题含解析_第1页
2025届江苏省宿迁市泗阳县九上数学期末复习检测试题含解析_第2页
2025届江苏省宿迁市泗阳县九上数学期末复习检测试题含解析_第3页
2025届江苏省宿迁市泗阳县九上数学期末复习检测试题含解析_第4页
2025届江苏省宿迁市泗阳县九上数学期末复习检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省宿迁市泗阳县九上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.设,,是抛物线上的三点,则,,的大小关系为()A. B. C. D.2.关于x的一元二次方程有两个实数根,,则k的值()A.0或2 B.-2或2 C.-2 D.23.一元二次方程的解的情况是()A.无解 B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个解4.如图,⊙O外接于△ABC,AD为⊙O的直径,∠ABC=30°,则∠CAD=()A.30° B.40° C.50° D.60°5.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20° B.30° C.40° D.45°6.如果将抛物线y=﹣x2﹣2向右平移3个单位,那么所得到的新抛物线的表达式是()A.y=﹣x2﹣5B.y=﹣x2+1C.y=﹣(x﹣3)2﹣2D.y=﹣(x+3)2﹣27.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.8.如图,直线AC,DF被三条平行线所截,若DE:EF=1:2,AB=2,则AC的值为()A.6 B.4 C.3 D.9.圆心角为140°的扇形的半径为3cm,则这个扇形的面积是()cm1.A.π B.3π C.9π D.6π10.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.11.由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是()A. B. C. D.12.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为,,则产量稳定,适合推广的品种为:()A.甲、乙均可 B.甲 C.乙 D.无法确定二、填空题(每题4分,共24分)13.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.14.若,则_______.15.如图,过原点的直线与反比例函数()的图象交于,两点,点在第一象限.点在轴正半轴上,连结交反比例函数图象于点.为的平分线,过点作的垂线,垂足为,连结.若是线段中点,的面积为4,则的值为______.16.如图,在中,,,以为直角边、为直角顶点作等腰直角三角形,则______.17.如图是某小组同学做“频率估计概率”的实验时,绘出的某一实验结果出现的频率折线图,则符合图中这一结果的实验可能是_______(填序号).①抛一枚质地均匀的硬币,落地时结果“正面朝上”;②在“石头,剪刀,布”的游戏中,小明随机出的是剪刀;③四张一样的卡片,分别标有数字1,2,3,4,从中随机取出一张,数字是1.18.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题(共78分)19.(8分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.20.(8分)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.21.(8分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD.(2)求证:CE∥AD;(3)若AD=4,AB=6,求AF的值.22.(10分)如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.23.(10分)某市计划建设一项水利工程,工程需要运送的土石方总量为米3,某运输公司承办了这项工程运送土石方的任务.(1)完成运送任务所需的时间(单位:天)与运输公司平均每天的工作量(单位:米3/天)之间具有怎样的函数关系?(2)已知这个运输公司现有50辆卡车,每天最多可运送土石方米3,则该公司完成全部运输任务最快需要多长时间?(3)运输公司连续工作30天后,天气预报说两周后会有大暴雨,公司决定10日内把剩余的土石方运完,平均每天至少增加多少辆卡车?24.(10分)如图,在中,点、、分别在边、、上,,,.(1)当时,求的长;(2)设,,那么__________,__________(用向量,表示)25.(12分)函数的图象的对称轴为直线.(1)求的值;(2)将函数的图象向右平移2个单位,得到新的函数图象.①直接写出函数图象的表达式;②设直线与轴交于点A,与y轴交于点B,当线段AB与图象只有一个公共点时,直接写出的取值范围.26.解方程:x2-7x-18=0.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y=-(x+1)2+k(k为常数)的开口向下,对称轴为直线x=﹣1,而A(2,y1)离直线x=﹣1的距离最远,C(﹣2,y3)点离直线x=1最近,∴.故选A.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.2、D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.【详解】解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.3、B【分析】求出判别式的值即可得到答案.【详解】∵2-4ac=9-(-4)=13,∴方程有两个不相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记判别式的计算方法及结果的三种情况是解题的关键.4、D【分析】首先由∠ABC=30°,推出∠ADC=30°,然后根据AD为⊙O的直径,推出∠DCA=90°,最后根据直角三角形的性质即可推出∠CAD=90°-∠ADC,通过计算即可求出结果.【详解】解:∵∠ABC=30°,∴∠ADC=30°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD=90°-30°=60°.故选D.【点睛】本题主要考查圆周角定理,直角三角形的性质,角的计算,关键在于通过相关的性质定理推出∠ADC和∠DCA的度数.5、C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B=60°,∵四边形ABCD是圆内接四边形,∴∠D=180°−∠B=120°,∴∠ACD=180°−∠DAC−∠D=40°,故选C.6、C【解析】先求出原抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】y=−x2−2的顶点坐标为(0,−2),∵向右平移3个单位,∴平移后的抛物线的顶点坐标为(3,−2),∴所得到的新抛物线的表达式是y=−(x−3)2−2.故选:C.【点睛】考查二次函数图象的平移,掌握二次函数图象平移的规律是解题的关键.7、A【分析】根据中心对称图形的定义和轴对称的定义逐一判断即可.【详解】A选项是中心对称图形,也是轴对称图形,故A符合题意;B选项是中心对称图形,不是轴对称图形,故B不符合题意;C选项不是中心对称图形,是轴对称图形,故C不符合题意;D选项是中心对称图形,不是轴对称图形,故D不符合题意.故选:A.【点睛】此题考查的是中心对称图形的识别和轴对称图形的识别,掌握中心对称图形的定义和轴对称图形的定义是解决此题的关键.8、A【分析】根据平行线分线段成比例定理得到比例式,求出BC,计算即可.【详解】解:∵l1∥l2∥l3,∴,又∵AB=2,∴BC=4,∴AC=AB+BC=1.

故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9、D【解析】试题分析:扇形面积的计算公式为:,故选择D.10、A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.考点:(1)中心对称图形;(2)轴对称图形11、A【解析】根据题意,由题目的结构特点,依据题目的已知条件,正视图是有两行,第一行两个,第二行三个且右对齐,从而得出答案.即可得到题目的结论.【详解】从正面看到的平面图形是:,故选A.【点睛】此题主要考查的是简单的组合体的三视图等有关知识,题目比较简单,通过考查,了解学生对简单的组合体的三视图等知识的掌握程度.熟练掌握简单的组合体的三视图是解决本题的关键.12、B【解析】试题分析:这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定,因此可知推广的品种为甲.答案为B考点:方差二、填空题(每题4分,共24分)13、2:1.【解析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.14、12【分析】根据比例的性质即可求解.【详解】∵,∴,故答案为:.【点睛】本题考查了比例的性质,解答本题的关键是明确比例的性质的含义.15、【分析】连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF;由AB经过原点,则A与B关于原点对称,再由BE⊥AE,AE为∠BAC的平分线,

可得AD∥OE,进而可得S△ACE=S△AOC;设点A(m,),由已知条件D是线段AC中点,DH∥AF,可得2DH=AF,则点D(2m,),证明△DHC≌△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S△HDC=k+k+=8;即可求解;【详解】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,

∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,

∴A与B关于原点对称,

∴O是AB的中点,

∵BE⊥AE,

∴OE=OA,

∴∠OAE=∠AEO,

∵AE为∠BAC的平分线,

∴∠DAE=∠AEO,

∴AD∥OE,

∴S△ACE=S△AOC,

∵D是线段AC中点,的面积为4,

∴AD=DC,S△ACE=S△AOC=8,

设点A(m,),∵D是线段AC中点,DH∥AF,

∴2DH=AF,

∴点D(2m,),∵CH∥GD,AG∥DH,

∴∠ADG=∠DCH,∠DAG=∠CDH,在△AGD和△DHC中,

∴S△HDC=S△ADG,

∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+×(DH+AF)×FH+S△HDC=k+k+=8;

∴k=8,

∴k=.

故答案为.【点睛】本题考查反比例函数k的意义;借助直角三角形和角平分线,将△ACE的面积转化为△AOC的面积是解题的关键.16、1【分析】由于AD=AB,∠CAD=90°,则可将△ABD绕点A逆时针旋转90°得△ABE,如图,根据旋转的性质得∠CAE=90°,AC=AE,BE=CD,于是可判断△ACE为等腰直角三角形,则∠ACE=45°,CE=AC=5,易得∠BCE=90°,然后在Rt△CAE中利用勾股定理计算出BE=1,从而得到CD=1.【详解】解:∵△ADB为等腰直角三角形,∴AD=AB,∠BAD=90°,将△ACD绕点A顺时针旋转90°得△AEB,如图,∴∠CAE=90°,AC=AE,CD=BE,∴△ACE为等腰直角三角形,∴∠ACE=45°,,∵∠ACB=45°,∴∠BCE=45°+45°=90°,在Rt△BCE中,,∴CD=1.故答案为1.【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,以及勾股定理等知识.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键的利用旋转得到直角三角形CBE.17、②【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】抛一枚硬币,出现正面朝上的频率是=0.5,故本选项错误;在“石头,剪刀,布”的游戏中,小明随机出的是剪刀的概率是,故本选项符合题意;四张一样的卡片,分别标有数字1,2,3,4,从中随机取出一张,数字是1的概率是0.25故答案为②.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.18、4π【分析】直接利用弧长公式计算即可求解.【详解】l==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l=(n是弧所对应的圆心角度数)三、解答题(共78分)19、(1)y=;y=-x+6(2)【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.【详解】解:(1)如图,过点A作AF⊥x轴交BD于E,∵点B(3,2)在反比例函数的图象上,∴a=3×2=6,∴反比例函数的表达式为,∵B(3,2),∴EF=2,∵BD⊥y轴,OC=CA,∴AE=EF=AF,∴AF=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(,4),∴,∴,∴一次函数的表达式为;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=,∴G(,1),∵A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.【点睛】此题主要考查了待定系数法,三角形的面积公式,三角形的中位线,解本题的关键是用待定系数法求出直线AB的解析式.20、(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,最小值为;②.【解析】试题分析:(1)只要证到三个内角等于90°即可.(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.试题解析:解:(1)证明:如图,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.如答图1,连接OD,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴.∵AD=1,AB=2,∴BD=5.∴.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.此时,CF=CB=1.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD相切,CF=CD=2.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图2所示.S△BCD=BC•CD=BD•CF″′.∴1×2=5×CF″′.∴CF″′=.∴≤CF≤1.∵S矩形ABCD=,∴,即.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴,即,解得.∴点G移动路线的长为.考点:1.圆的综合题;2.单动点问题;2.垂线段最短的性质;1.直角三角形斜边上的中线的性质;5.矩形的判定和性质;6.圆周角定理;7.切线的性质;8.相似三角形的判定和性质;9.分类思想的应用.21、(1)详见解析;(2)详见解析;(3)AF=.【分析】(1)先根据角平分线得出∠CAD=∠CAB,进而判断出△ADC∽△ACB,即可得出结论;(2)先利用直角三角形的性质得出CE=AE,进而得出∠ACE=∠CAE,从而∠CAD=∠ACE,即可得出结论;(3)由(1)的结论求出AC,再求出CE=3,最后由(2)的结论得出△CFE∽△AFD,即可得出结论.【详解】解:(1)∵AC平分∠BAD,∴∠CAD=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,∴AC2=AD•AB;(2)在Rt△ABC中,∵E为AB的中点,∴CE=AE(直角三角形斜边的中线等于斜边的一半),∴∠ACE=∠CAE,∵AC平分∠BAD,∴∠CAD=∠CAE,∴∠CAD=∠ACE,∴CE∥AE;(3)由(1)知,AC2=AD•AB,∵AD=4,AB=6,∴AC2=4×6=24,∴AC=2,在Rt△ABC中,∵E为AB的中点,∴CE=AB=3,由(2)知,CE∥AD,∴△CFE∽△AFD,∴,∴,∴AF=.【点睛】此题考查的是相似三角形的判定及性质、直角三角形的性质和平行线的判定,掌握相似三角形的判定及性质、直角三角形斜边的中线等于斜边的一半和平行线的判定是解决此题的关键.22、(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S△PAB=S△BPO+S△APO-S△AOB,设P求出关于n的函数式,从而求S△PAB的最大值.(3)求点D的坐标,设D,过D做DG垂直于AC于G,构造直角三角形,利用勾股定理或三角函数值来求t的值即得D的坐标;探究在y轴上是否存在点,使?根据以上条件和结论可知∠CAD=120°,是∠CQD的2倍,联想到同弧所对的圆周角和圆心角,所以以A为圆心,AO长为半径做圆交y轴与点Q,若能求出这样的点,就存在Q点.【详解】解:抛物线顶点为可设抛物线解析式为将代入得抛物线,即连接,设点坐标为当时,最大值为存在,设点D的坐标为过作对称轴的垂线,垂足为,则在中有化简得(舍去),∴点D(,-3)连接,在中在以为圆心,为半径的圆与轴的交点上此时设点为(0,m),AQ为的半径则AQ²=OQ²+OA²,6²=m²+3²即∴综上所述,点坐标为故存在点Q,且这样的点有两个点.【点睛】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.23、(1);(2)该公司完成全部运输任务最快需要50天;(3)每天至少增加50辆卡车.【分析】(1)根据“平均每天的工作量×工作时间=工作总量”即可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论