![河南省郑州市登封市2025届九上数学期末检测试题含解析_第1页](http://file4.renrendoc.com/view5/M00/19/08/wKhkGGaZUfKAL-sgAAHZ2JQgCEo231.jpg)
![河南省郑州市登封市2025届九上数学期末检测试题含解析_第2页](http://file4.renrendoc.com/view5/M00/19/08/wKhkGGaZUfKAL-sgAAHZ2JQgCEo2312.jpg)
![河南省郑州市登封市2025届九上数学期末检测试题含解析_第3页](http://file4.renrendoc.com/view5/M00/19/08/wKhkGGaZUfKAL-sgAAHZ2JQgCEo2313.jpg)
![河南省郑州市登封市2025届九上数学期末检测试题含解析_第4页](http://file4.renrendoc.com/view5/M00/19/08/wKhkGGaZUfKAL-sgAAHZ2JQgCEo2314.jpg)
![河南省郑州市登封市2025届九上数学期末检测试题含解析_第5页](http://file4.renrendoc.com/view5/M00/19/08/wKhkGGaZUfKAL-sgAAHZ2JQgCEo2315.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市登封市2025届九上数学期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为()A. B. C. D.2.抛物线的顶点坐标为()A. B. C. D.3.如图,在矩形ABCD中,对角线AC,BD交与点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条 B.4条C.5条 D.6条4.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图:(1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C;(2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.根据以上作图过程及所作图形,下列结论中错误的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=5.把抛物线向右平移3个单位,再向上平移2个单位,得到抛物线().A. B. C. D.6.下列图形中,既是中心对称图形又是轴对称图形的有几个()A.4个 B.3个 C.2个 D.1个7.如图,点是上的点,,则是()
A. B. C. D.8.如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是()A. B.C.或 D.或9.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A. B. C. D.10.已知函数:(1)xy=9;(2)y=;(3)y=-;(4)y=;(5)y=,其中反比例函数的个数为(
)A.1 B.2 C.3 D.411.小兵身高1.4m,他的影长是2.1m,若此时学校旗杆的影长是12m,那么旗杆的高度()A.4.5m B.6m C.7.2m D.8m12.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度是()A.4cm B.3cm C.2cm D.1cm二、填空题(每题4分,共24分)13.反比例函数与在第一象限内的图象如图所示,轴于点,与两个函数的图象分别相交于两点,连接,则的面积为_________.14.如图,内接于半径为的半,为直径,点是弧的中点,连结交于点,平分交于点,则______.若点恰好为的中点时,的长为______.15.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.16.已知线段a=4cm,b=9cm,则线段a,b的比例中项为_________cm.17.如果一元二次方程有两个相等的实数根,那么是实数的取值为________.18.若m+n=3,则2m2+4mn+2n2-6的值为________.三、解答题(共78分)19.(8分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.20.(8分)如图,是中边上的中点,交于点,是中边上的中点,且与交于点.(1)求的值.(2)若,求的长.(用含的代数式表示)21.(8分)如图,在等腰中,,以为直径的,分别与和相交于点和,连接.(1)求证:;(2)求证:.22.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;(2)如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?23.(10分)如图,在边长为1的正方形组成的网格中,的顶点均在格点上,点,的坐标分别是,,绕点逆时针旋转后得到.(1)画出,直接写出点,的坐标;(2)求在旋转过程中,点经过的路径的长;(3)求在旋转过程中,线段所扫过的面积.24.(10分)已知:点D是△ABC中AC的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F.(1)求证:△GAE∽△GBF;(2)求证:AE=CF;(3)若BG:GA=3:1,BC=8,求AE的长.25.(12分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A,B,C,D四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a的值为;(2)求C等级对应扇形的圆心角的度数;(3)获得A等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.26.有4张看上去无差别的卡片,上面分别写着1,2,3,4.(1)一次性随机抽取2张卡片,求这两张卡片上的数字之和为奇数的概率;(2)随机摸取1张后,放回并混在一起,再随机抽取1张,求两次取出的卡片上的数字之和等于4的概率.
参考答案一、选择题(每题4分,共48分)1、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】亿=3.0924×1012,
故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、D【解析】根据抛物线顶点式的性质进行求解即可得答案.【详解】∵解析式为∴顶点为故答案为:D.【点睛】本题考查了已知二次函数顶点式求顶点坐标,注意点坐标符号有正负.3、D【详解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6条线段为1.故选D.4、D【分析】由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论.【详解】由作法得CA=CB=CD=AB,故B正确;∴点B在以AD为直径的圆上,∴∠ABD=90°,故A正确;∴点C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正确;cosD=,故D错误,故选:D.【点睛】本题考查了解直角三角形,三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和解直角三角形.5、D【分析】直接根据平移规律(左加右减,上加下减)作答即可.【详解】将抛物线y=x2+1向右平移1个单位,再向上平移2个单位后所得抛物线解析式为y=(x-1)2+1.
故选:D.【点睛】此题考查函数图象的平移,解题关键在于熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,是中心对称图形;第三个图形是轴对称图形,不是中心对称图形;第四个图形不是轴对称图形,是中心对称图形;既是中心对称图形又是轴对称图形的有1个,故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、A【分析】本题利用弧的度数等于所对的圆周角度数的2倍求解优弧度数,继而求解劣弧度数,最后根据弧的度数等于圆心角的度数求解本题.【详解】如下图所示:∵∠BDC=120°,∴优弧的度数为240°,∴劣弧度数为120°.∵劣弧所对的圆心角为∠BOC,∴∠BOC=120°.故选:A.【点睛】本题考查圆的相关概念,解题关键在于清楚圆心角、圆周角、弧各个概念之间的关系.8、D【解析】显然当y1>y2时,正比例函数的图象在反比例函数图象的上方,结合图形可直接得出结论.【详解】∵正比例函数y1=k1x的图象与反比例函数的图象交于A(-1,-2),B(1,2)点,
∴当y1>y2时,自变量x的取值范围是-1<x<0或x>1.
故选:D.【点睛】本题考查了反比例函数与一次函数的交点问题,数形结合的思想是解题的关键.9、C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=,故选C.10、C【分析】直接根据反比例函数的定义判定即可.【详解】解:反比例函数有:xy=9;y=;y=-.故答案为C.【点睛】本题考查了反比例函数的定义,即形如y=(k≠0)的函数关系叫反比例函数关系.11、D【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】根据相同时刻的物高与影长成比例,设旗杆的高度为xm,根据题意得:,解得:x=8,即旗杆的高度为8m,故选:D.【点睛】本题主要考查了相似三角形的应用,同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.12、B【分析】过点O作OM⊥DE于点M,连接OD,根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的两条弧”和勾股定理进行计算,即可求出答案.【详解】过点O作OM⊥DE于点M,连接OD.∴DE=12∵DE=8cm,∴DM=4cm,在Rt△ODM中,∵OD=OC=5cm,∴OM=∴直尺的宽度为3cm.故答案选B.【点睛】本题主要考查了垂径定理和勾股定理,灵活运用这些定理是解答本题的关键.二、填空题(每题4分,共24分)13、【分析】设直线AB与x轴交于点C,那么.根据反比例函数的比例系数k的几何意义,即可求出结果.【详解】设直线AB与x轴交于点C.
∵AC⊥x轴,BC⊥x轴.
∵点A在双曲线的图象上,
∴,∵点B在双曲线的图象上,∴,∴.
故答案为:1.【点睛】本题主要考查反比例函数的比例系数的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.14、【分析】(1)先根据直径所对的圆周角是直角可求出∠ACB=90°,再根据三角形的内角和定理可求出∠BAC+∠ABC=90°,然后根据角平分线的性质可求出∠DAB+∠DBA=45°,最后利用外角的性质即可求出∠MAD的度数;
(2)如图连接AM,先证明△AME∽△BCE,得到再列代入数值求解即可.【详解】解:(1)∵为直径,∴∠ACB=90°.∴∠BAC+∠ABC=90°∵点是弧的中点,∴∠ABM=∠CBM=∠ABC.∵平分交于点,∴∠BAD=∠CAD=∠BAC.∴∠DAB+∠DBA=∠ABC+∠BAC=45°.∴45°.(2)如图连接AM.
∵AB是直径,
∴∠AMB=90°
∵∠ADM=45°,
∴MA=MD,
∵DM=DB,
∴BM=2AM,设AM=x,则BM=2x,
∵AB=4,
∴x2+4x2=160,
∴x=4(负根已经舍弃),
∴AM=4,BM=8,∵∠MAE=∠CBM,∠CBM=∠ABM.∴∠MAE==∠ABM.∵∠AME=∠AMB=90°,∴△AME∽△BMA.∴∴∴ME=2.故答案为:(1).(2)..【点睛】本题考查圆周角定理,圆心角,弧弦之间的关系,相似三角形的判定和性质,作出辅助线是解题的关键.15、0<m<13【解析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣512由y=﹣512x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣5设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=125∴A(125即OA=125在Rt△OAB中,AB=OA过点O作OD⊥AB于D,∵S△ABO=12OD•AB=1∴12OD•135m=1∵m>0,解得OD=1213由直线与圆的位置关系可知1213m<6,解得m<13故答案为0<m<132【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.16、6【分析】设比例中项为c,得到关于c的方程即可解答.【详解】设比例中项为c,由题意得:,∴,∴c1=6,c2=-6(不合题意,舍去)故填6.【点睛】此题考查线段成比例,理解比例中项的含义即可正确解答.17、【分析】根据一元二次方程有两个相等的实数根,得知其判别式的值为0,即=32-4×2×m=0,解得m即可.【详解】解:根据题意得,=32-4×2×m=0,
解得m=.故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与=b2-4ac有如下关系:当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程无实数根.18、1【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=1.三、解答题(共78分)19、(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴.在Rt△EDC中,M是斜边EC的中点,∴.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H.∵DM=MF,EM=MC,∴四边形CDEF为平行四边形,∴DE∥CF,ED=CF,∵ED=AD,∴AD=CF,∵DE∥CF,∴∠AHE=∠ACF.∵,,∴∠BAD=∠BCF,又∵AB=BC,∴△ABD≌△CBF,∴BD=BF,∠ABD=∠CBF,∵∠ABD+∠DBC=∠CBF+∠DBC,∴∠DBF=∠ABC=90°.在Rt△中,由,,得BM=DM且BM⊥DM.【点睛】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.20、(1);(2)【分析】(1)通过证明,再根据相似三角形对应边成比例即可求出;(2)设AB=m,由是中边上的中点,可得,进而得出,根据题意,进而得出【详解】解:(1)∵为的中点,,∴为的中点,,∴,∴,∴,∴,∴.(2)∵,∴.∵,∴.∵,∴.【点睛】本题考查了相似三角形的判定及性质和三角形的中位线定理,熟练掌握相关性质结合题目条件论证是解题的关键.21、(1)见解析;(2)见解析.【分析】(1)根据等腰三角形的性质可得,,从而得出,最后根据平行线的判定即可证出结论;(2)连接半径,根据等腰三角形的性质可得,再根据平行线的性质可得,,从而得出,最后根据在同圆中,相等的圆心角所对的弦也相等即可证出结论.【详解】证明:(1)∵,∴,∵,∴,∴,∴;(2)连接半径,∴,∴,由(1)知,∴,,∴,∴,∴.【点睛】此题考查的是圆的基本性质、等腰三角形的性质和平行线的判定及性质,掌握在同圆中,相等的圆心角所对的弦也相等、等边对等角和平行线的判定及性质是解决此题的关键.22、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.【分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x的值不能为7.理由:假设x=7,则P(和为9)=≠,所以x的值不能为7.【点睛】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.23、(1)见解析,;(2);(3)【分析】(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;
(2)利用勾股定理列式求出OB的长,再利用弧长公式列式计算即可得解;
(3)根据AB扫过的面积等于以OA、OB为半径的两个扇形的面积的差列式计算即可得解.【详解】解:(1)△A1OB1如图所示,
A1(-3,3),B1(-2,1);(2)由勾股定理得,∴弧BB1的长=(3)由勾股定理得,∴∴∴线段AB所扫过的面积为:【点睛】本题考查利用旋转变换作图,弧长计算,扇形的面积,熟练掌握网格结构,准确找出对应点的位置是解题的关键,(3)判断出AB扫过的面积等于两个扇形的面积的差是解题的关键.24、(1)详见解析;(2)详见解析;(3)AE=1【分析】(1)由AE∥BC可直接判定结论;(2)先证△ADE≌△CDF,即可推出结论;(3)由△GAE∽△GBF,可用相似三角形的性质求出结果.【详解】(1)∵AE∥BC,∴△GAE∽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行业趋势分析与未来规划计划
- 班级自主课题研究计划
- 2025年比特币投资项目发展计划
- 2025年超净高纯试剂项目发展计划
- 2025年燃气掺混设备项目合作计划书
- 少年儿童文学奖作品征文
- 2025年牙科综合治疗机项目建议书
- 格林童话之灰姑娘的童话解读
- 办公IT设备采购说明及预算报告
- 小王子书中的成长读后感
- 2024年山东省(枣庄、菏泽、临沂、聊城)中考语文试题含解析
- 2024新版(北京版)三年级英语上册单词带音标
- 财务审计服务方案投标文件(技术方案)
- 养老服务机构复工复产实施方案复工复产安全生产方案
- 2024-2025学年小学科学六年级下册苏教版(2024)教学设计合集
- 9《黄山奇石》教学设计-2024-2025学年统编版语文二年级上册
- PP、PVC-风管制作安装施工作业指导书
- 新型智慧水利项目数字孪生工程解决方案
- 苏教版五年级上册脱式计算300道及答案
- 辽宁省沈阳市铁西区2025届初三最后一次模拟(I卷)数学试题含解析
- 英语完形填空练习题20篇
评论
0/150
提交评论