![海南省海口市琼山区长流实验学校2025届数学九上期末检测模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M07/20/0B/wKhkGWaZUSuAJoGFAAG0jTOljmY617.jpg)
![海南省海口市琼山区长流实验学校2025届数学九上期末检测模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M07/20/0B/wKhkGWaZUSuAJoGFAAG0jTOljmY6172.jpg)
![海南省海口市琼山区长流实验学校2025届数学九上期末检测模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M07/20/0B/wKhkGWaZUSuAJoGFAAG0jTOljmY6173.jpg)
![海南省海口市琼山区长流实验学校2025届数学九上期末检测模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M07/20/0B/wKhkGWaZUSuAJoGFAAG0jTOljmY6174.jpg)
![海南省海口市琼山区长流实验学校2025届数学九上期末检测模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M07/20/0B/wKhkGWaZUSuAJoGFAAG0jTOljmY6175.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省海口市琼山区长流实验学校2025届数学九上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若|m|=5,|n|=7,m+n<0,则m﹣n的值是()A.﹣12或﹣2 B.﹣2或12 C.12或2 D.2或﹣122.关于反比例函数,下列说法正确的是()A.图象过(1,2)点 B.图象在第一、三象限C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大3.如图,在菱形中,已知,,以为直径的与菱形相交,则图中阴影部分的面积为()A. B. C. D.4.抛物线y=2(x-1)2-6的对称轴是().A.x=-6 B.x=-1 C.x= D.x=15.如图,点A、B、C在上,∠A=72°,则∠OBC的度数是()A.12° B.15° C.18° D.20°6.已知点P(a+1,)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.7.如图,CD是⊙O的直径,已知∠1=30°,则∠2等于()A.30° B.45° C.60° D.70°8.扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.9.下列说法正确的是()A.一组对边相等且有一个角是直角的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线相等且互相垂直的四边形是正方形D.对角线平分一组对角的平行四边形是菱形10.已知关于x的一元二次方程的一个根为1,则m的值为()A.1 B.-8 C.-7 D.7二、填空题(每小题3分,共24分)11.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=________12.已知:中,点是边的中点,点在边上,,,若以,,为顶点的三角形与相似,的长是____.13.如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为___________.14.二次函数y=2x2﹣4x+4的图象如图所示,其对称轴与它的图象交于点P,点N是其图象上异于点P的一点,若PM⊥y轴,MN⊥x轴,则=_____.15.将抛物线y=﹣2x2+1向左平移三个单位,再向下平移两个单位得到抛物线________;16.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x,则列出方程是______________.17.如图,已知AD∥BE∥CF,它们依次交直线、于点A、B、C和点D、E、F.如果,DF=15,那么线段DE的长是__.18.如图,是⊙的直径,是⊙上一点,的平分线交⊙于,且,则的长为_________.三、解答题(共66分)19.(10分)如图,已知一次函数分别交x、y轴于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一交点为C.(1)求b、c的值及点C的坐标;(2)动点P从点O出发,以每秒1个单位长度的速度向点A运动,过P作x轴的垂线交抛物线于点D,交线段AB于点E.设运动时间为t(t>0)秒.①当t为何值时,线段DE长度最大,最大值是多少?(如图1)②过点D作DF⊥AB,垂足为F,连结BD,若△BOC与△BDF相似,求t的值.(如图2)20.(6分)如图,在中,,动点从点出发,沿以每秒个单位长度的速度向终点运动.过点作于点(点不与点重合),作,边交射线于点.设点的运动时间为秒.(1)用含的代数式表示线段的长.(2)当点与点重合时,求的值.(3)设与重叠部分图形的面积为,求与之间的函数关系式.21.(6分)如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.22.(8分)先化简,再求值:1-,其中a、b满足.23.(8分)如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.24.(8分)如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.25.(10分)某商店经过市场调查,整理出某种商品在第()天的售价与销量的相关信息如下表.已知该商品的进价为每件30元,设销售该商品每天的利润为元.(1)求与的函数关系是;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?26.(10分)如图,在正方形中,,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、.小颖根据学习函数的经验,在点运动过程中,对线段、、的长度之间的关系进行了探究.下面是小颖的探究过程,请补充完整:(1)对于点在、边上的不同位置,画图、测量,得到了线段、、的长度的几组值,如下表:位置位置位置位置位置位置位置在、和的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数.(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:(3)结合函数图像,解决问题:当为等腰三角形时,的长约为
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意,利用绝对值的意义求出m与n的值,再代入所求式子计算即可.【详解】解:∵|m|=5,|n|=7,且m+n<0,∴m=5,n=﹣7;m=﹣5,n=﹣7,可得m﹣n=12或2,则m﹣n的值是12或2.故选:C.【点睛】本题考查了绝对值的意义,掌握绝对值的意义求值是关键.2、D【解析】试题分析:根据反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大.可由k=-2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误.故选D.考点:反比例函数图象的性质3、D【分析】根据菱形与的圆的对称性到△AOE为等边三角形,故可利用扇形AOE的面积减去△AOE的面积得到需要割补的面积,再利用圆的面积减去4倍的需要割去的面积即可求解.【详解】∵菱形中,已知,,连接AO,BO,∴∠ABO=30°,∠AOB=90°,∴∠BAO=60°,又AO=EO,∴△AOE为等边三角形,故AE=EO=AB=2∴r=2∴S扇形AOE==S△AOE===∴图中阴影部分的面积=×22-4(-)=故选D.【点睛】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.4、D【解析】根据抛物线的顶点式,直接得出结论即可.【详解】解:∵抛物线y=2(x-1)2-6,
∴抛物线的对称轴是x=1.
故选D.【点睛】本题考查了二次函数的性质,要熟悉二次函数的顶点式:y=a(x-h)2+k(a≠0),其顶点坐标为(h,k),对称轴为x=h.5、C【分析】根据圆周角定理可得∠BOC的度数,根据等腰三角形的性质即可得答案.【详解】∵点A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故选:C.【点睛】本题考查圆周角定理及等腰三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.6、C【解析】试题分析:∵P(,)关于原点对称的点在第四象限,∴P点在第二象限,∴,,解得:,则a的取值范围在数轴上表示正确的是.故选C.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.7、C【解析】试题分析:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°考点:圆周角定理8、D【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【点睛】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.9、D【分析】根据矩形、正方形、菱形的判定方法一一判断即可;【详解】A、一组对边相等且有一个角是直角的四边形不一定是矩形,故本选项不符合题意;B、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意;C、对角线相等且互相垂直的四边形不一定是正方形,故本选项不符合题意;D、对角线平分一组对角的平行四边形是菱形,正确.故选:D.【点睛】本题考查矩形、正方形、菱形的判定方法,属于中考常考题型.10、D【解析】直接利用一元二次方程的解的意义将x=1代入求出答案即可.【详解】∵关于x的一元二次方程x2+mx−8=0的一个根是1,∴1+m−8=0,解得:m=7.故答案选:D.【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.二、填空题(每小题3分,共24分)11、-1【解析】根据两已知点的坐标特征得到它们是抛物线的对称点,而这两个点关于直线x=-1对称,由此可得到抛物线的对称轴.【详解】∵点(3,4)和(-5,4)的纵坐标相同,∴点(3,4)和(-5,4)是抛物线的对称点,而这两个点关于直线x=-1对称,∴抛物线的对称轴为直线x=-1.故答案为-1.【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-.12、4或【分析】根据相似三角形对应边成比例进行解答.【详解】解:分两种情况:
①∵△AEF∽△ABC,
∴AE:AB=AF:AC,即:②∵△AEF∽△ACB,
∴AF:AB=AE:AC,
即:故答案为:4或【点睛】本题考查了相似三角形的性质,在解答此类题目时要找出对应的角和边.13、【分析】根据题意可知扇形ABC围成圆锥后的底面周长就是弧BC的弧长,再根据弧长公式和圆周长公式来求解.【详解】解:作于点,连结OA、BC,∵∠BAC=90°∴BC是直径,OB=OC,,圆锥的底面圆的半径故答案为:【点睛】本题考查了扇形围成圆锥形,圆锥的底面圆的周长就是原来扇形的弧长,找到它们的关系是解题的关键.14、1.【分析】根据题目中的函数解析式可得到点P的坐标,然后设出点M、点N的坐标,然后计算即可解答本题.【详解】解:∵二次函数y=1x1﹣4x+4=1(x﹣1)1+1,∴点P的坐标为(1,1),设点M的坐标为(a,1),则点N的坐标为(a,1a1﹣4a+4),∴===1,故答案为:1.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P左边,设出点M、点N的坐标,表达出.15、【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键.16、=31.1【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.1故答案为:=31.1.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的.17、6【分析】由平行得比例,求出的长即可.【详解】解:,,,,解得:,故答案为:6.【点睛】此题考查了平行线分线段成比例,熟练掌握平行线分线段成比例性质是解本题的关键.18、【分析】连接OD,由AB是直径,得∠ACB=90°,由角平分线的性质和圆周角定理,得到△AOD是等腰直角三角形,根据勾股定理,即可求出AD的长度.【详解】解:连接OD,如图,∵是⊙的直径,∴∠ACB=90°,AO=DO=,∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,∴△AOD是等腰直角三角形,∴;故答案为:.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,勾股定理,以及等腰直角三角形的性质,解题的关键是掌握圆周角定理进行解题.三、解答题(共66分)19、(1)b=2,c=3,C点坐标为(-1,0);(2)①;②【分析】(1)由一次函数求出点A、B坐标,代入抛物线解析式可求出b、c的值,令y=0可求出点C的坐标;(2)①由题意可知P(t,0),D(t,)、E(t,-t+3),然后表示出DE,利用二次函数的最值即可求出DE最大值;②分别用t表示出AP、EP、AE、DE、EF、BF,然后分类讨论相似的两种情况,或,列式求解即可.【详解】解:(1)在中令x=0,得y=3,令y=0,得x=3,∴A(3,0),B(0,3),把A(3,0),B(0,3)代入y=﹣x2+bx+c中,得:,解得,∴抛物线的解析式为y=﹣x2+2x+3,令y=0则0=﹣x2+2x+3,解得,∴C点坐标为(-1,0);(2)①由题知P(t,0),D(t,)、E(t,-t+3);∴DE=()-()∴当时,DE长度最大,最大值为;②∴A(3,0),B(0,3),∴OA=OB,∴∠BAO=45°,在Rt△PAE中,∠PAE=45°,;在Rt△DEF中,∠DEF=45°,;∴若△BDF∽△CBO相似,则,即:,解得:(舍去);,若△BDF∽△BCO相似,则,即:,解得:(舍去);,;综上,或时,△BOC与△BDF相似.【点睛】本题是二次函数压轴题,着重考查了分类讨论的数学思想,考查了二次函数的图象与性质、三角形相似、一次函数、解方程等知识点,难度较大.最后一问为探索题型,注意进行分类讨论.20、(1);(2)t=1;(3).【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论.【详解】解:在中,.,在中,,.在中,,.点和点重合,,;当时,;当时,如图2,,在中,,,【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,正确作出图形是解本题的关键.21、(1)抛物线的解析式为y=x1-x-1顶点D的坐标为(,-).(1)△ABC是直角三角形,理由见解析;(3).【解析】(1)把点A坐标代入抛物线即可得解析式,从而求得顶点坐标;(1)分别计算出三条边的长度,符合勾股定理可知其是直角三角形;(3)作出点C关于x轴的对称点C′,则C′(0,1),OC′=1,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.【详解】解:(1)∵点A(-1,0)在抛物线y=x1+bx-1上∴×(-1)1+b×(-1)–1=0解得b=∴抛物线的解析式为y=x1-x-1.y=x1-x-1=(x1-3x-4)=(x-)1-,∴顶点D的坐标为(,-).(1)当x=0时y=-1,∴C(0,-1),OC=1.当y=0时,x1-x-1=0,∴x1=-1,x1=4∴B(4,0)∴OA=1,OB=4,AB=5.∵AB1=15,AC1=OA1+OC1=5,BC1=OC1+OB1=10,∴AC1+BC1=AB1.∴△ABC是直角三角形.(3)作出点C关于x轴的对称点C′,则C′(0,1),OC′=1,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.解法一:设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴∴,∴m=.解法二:设直线C′D的解析式为y=kx+n,则,解得n=1,.∴.∴当y=0时,,∴.22、,.【解析】试题分析:首先化简分式,然后根据a、b满足的关系式,求出a、b的值,再把求出的a、b的值代入化简后的算式,求出算式的值是多少即可.试题解析:解:原式====∵a、b满足,∴a﹣=0,b+1=0,∴a=,b=﹣1,当a=,b=﹣1时,原式==.点睛:此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.23、(1);(2);(3).【分析】将A,B,C点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D的坐标为,作B点关于直线的对称点,可求出直线的函数关系式为,当在直线上时,的值最小;(3)作轴交AC于E点,求得AC的解析式为,设,,得,所以,,求函数的最大值即可.【详解】将A,B,C点的坐标代入解析式,得方程组:解得抛物线的解析式为配方,得,顶点D的坐标为作B点关于直线的对称点,如图1,则,由得,可求出直线的函数关系式为,当在直线上时,的值最小,则.作轴交AC于E点,如图2,AC的解析式为,设,,,当时,的面积的最大值是;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.24、(1)见解析;(2).【分析】(1)根据矩形的性质可得∠A=∠D=90°,再根据同角的余角相等求出∠1=∠3,然后利用两角对应相等,两三角形相似证明;
(2)利用勾股定理列式求出BE,再求出DE,然后根据相似三角形对应边成比例列式求解即可.【详解】(1)证明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥BE,
∴∠2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《质粒和噬菌体》课件
- 《诗歌翻译欣赏》课件
- 《上市公司典型案例》课件
- 《海底两万里读后感》课件
- 《KPM演示砌体》课件
- 《顾客满意管理CS》课件
- 2025年健康营养食堂承包经营合同标准模板3篇
- 《财务报表分析教材》课件
- 小学生课外绘本的故事解读
- 小学科学小实验征文
- 中国妊娠期糖尿病母儿共同管理指南(2024版)解读
- 期末试卷:安徽省宣城市2021-2022学年七年级上学期期末历史试题(解析版)
- 食品抽检核查处置重点安全性指标不合格原因分析排查手册
- 幼儿教师新年规划
- 春节促销活动方案(7篇)
- 五年级数学上册 图形与几何专题测试卷 (含答案)(北师大版)
- 2024年湖南省公务员录用考试《行测》真题及答案解析
- 火灾自动报警及其消防联动系统技术规格书
- 设备管理人员安全培训
- 分布式光伏培训
- 山东省房屋市政工程安全监督机构人员业务能力考试题库-上(单选题)
评论
0/150
提交评论