山东省烟台市福山区2025届九年级数学第一学期期末检测模拟试题含解析_第1页
山东省烟台市福山区2025届九年级数学第一学期期末检测模拟试题含解析_第2页
山东省烟台市福山区2025届九年级数学第一学期期末检测模拟试题含解析_第3页
山东省烟台市福山区2025届九年级数学第一学期期末检测模拟试题含解析_第4页
山东省烟台市福山区2025届九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省烟台市福山区2025届九年级数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.抛物线y=(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,﹣3) D.(3,﹣1)2.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:43.把两个同样大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点,且另三个锐角顶点在同一直线上,若,则的长是()A. B. C.0.5 D.4.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A. B. C. D.5.如果将抛物线y=﹣x2﹣2向右平移3个单位,那么所得到的新抛物线的表达式是()A.y=﹣x2﹣5B.y=﹣x2+1C.y=﹣(x﹣3)2﹣2D.y=﹣(x+3)2﹣26.某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为()A.150 B.100 C.50 D.2007.若方程(m﹣1)x2﹣4x=0是关于x的一元二次方程,则m的取值范围是()A.m≠1 B.m=1 C.m≠0 D.m≥18.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)9.甲、乙两位同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,给出的统计图如图所示,则符合这一结果的试验可能是()A.掷一枚硬币,出现正面朝上的概率B.掷一枚硬币,出现反面朝上的概率C.掷一枚骰子,出现点的概率D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率10.用配方法解方程时,原方程可变形为()A. B. C. D.11.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70° B.110° C.120° D.140°12.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4二、填空题(每题4分,共24分)13.如果向量a、b、x满足关系式2a﹣(x﹣3b)=4b,那么x=_____(用向量a、b表示).14.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是_____个.15.△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是____________.16.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).17.若二次函数的图象与x轴只有一个公共点,则实数n=______.18.平面直角坐标系xOy中,若点P在曲线y=上,连接OP,则OP的最小值为_____.三、解答题(共78分)19.(8分)抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)20.(8分)如图在直角坐标系中△ABC的顶点A、B、C三点坐标为A(7,1),B(8,2),C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A'B'C'(要求与△ABC在P点同一侧);(2)直接写出A'点的坐标;(3)直接写出△A'B'C'的周长.21.(8分)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)若OB=4,OC=5,求AO的长.22.(10分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π).23.(10分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?24.(10分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、3、﹣4,这些卡片除数字外都相同.王兴从口袋中随机抽取一张卡片,钟华从剩余的三张卡片中随机抽取一张,求两张卡片上数字之积.(1)请你用画树状图或列表的方法,列出两人抽到的数字之积所有可能的结果.(2)求两人抽到的数字之积为正数的概率.25.(12分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;26.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据顶点式解析式写出顶点坐标即可.【详解】解:抛物线y=(x﹣1)2+3的顶点坐标是(1,3).故选:A.【点晴】本题考查了二次函数的性质,主要是利用顶点式解析式写顶点的方法,需熟记.2、C【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3(两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.3、D【分析】过点D作BC的垂线DF,垂足为F,由题意可得出BC=AD=2,进而得出DF=BF=1,利用勾股定理可得出AF的长,即可得出AB的长.【详解】解:过点D作BC的垂线DF,垂足为F,由题意可得出,BC=AD=2,根据等腰三角形的三线合一的性质可得出,DF=BF=1利用勾股定理求得:∴故选:D.【点睛】本题考查的知识点是等腰直角三角形的性质,灵活运用等腰直角三角形的性质是解此题的关键.4、D【详解】由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.5、C【解析】先求出原抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】y=−x2−2的顶点坐标为(0,−2),∵向右平移3个单位,∴平移后的抛物线的顶点坐标为(3,−2),∴所得到的新抛物线的表达式是y=−(x−3)2−2.故选:C.【点睛】考查二次函数图象的平移,掌握二次函数图象平移的规律是解题的关键.6、A【分析】根据大量重复试验中的频率估计出概率,利用概率公式求得草鱼的数量即可.【详解】∵通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,∴捕捞到草鱼的概率约为0.5,设有草鱼x条,根据题意得:=0.5,解得:x=150,故选:A.【点睛】本题考查用样本估计总体,解题的关键是明确题意,由草鱼出现的频率可以计算出鱼的数量.7、A【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得m−1≠0,再解即可.【详解】解:由题意得:m﹣1≠0,解得:m≠1,故选:A.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.8、A【分析】设反比例函数y=(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【详解】设反比例函数y=(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-的图象上.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9、D【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A.掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B.掷一枚硬币,出现反面朝上的概率为,故此选项不符合题意;C.掷一枚骰子,出现点的概率为,故此选项不符合题意;D.从只有颜色不同的两个红球和一个黄球中,随机取出一个球是黄球的概率为,故此选项符合题意;故选:D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.10、B【分析】先将二次项系数化为1,将常数项移动到方程的右边,方程两边同时加上一次项系数的一半的平方,结合完全平方公式进行化简即可解题.【详解】故选:B.【点睛】本题考查配方法解一元二次方程,其中涉及完全平方公式,是重要考点,难度较易,掌握相关知识是解题关键.11、D【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【详解】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半12、C【解析】根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题(每题4分,共24分)13、2a﹣b【解析】根据平面向量的加减法计算法则和方程解题.【详解】2a2ax=2故答案是2a【点睛】本题主要考查平面向量,此题是利用方程思想求得向量的值的,难度不大.14、1【分析】根据几何体的三视图可进行求解.【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=1(个).故答案为1.【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.15、120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.16、【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=lr=×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=lr是解题的关键.17、1.【解析】】解:y=x2﹣1x+n中,a=1,b=﹣1,c=n,b2﹣1ac=16﹣1n=0,解得n=1.故答案为1.18、1【分析】设点P(a,b),根据反比例函数图象上点的坐标特征可得=18,根据=,且≥2ab,可求OP的最小值.【详解】解:设点P(a,b)∵点P在曲线y=上,∴=18∵≥0,∴≥2ab,∵=,且≥2ab,∴≥2ab=31,∴OP最小值为1.【点睛】本题考查了反比例函数图象上点的坐标特征,灵活运用≥2ab是本题的关键.三、解答题(共78分)19、(1)①b=2;②△CBE面积的最大值为1,此时E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①将点B(2,0)代入y=﹣x2+x+b即可求b;②设E(m,﹣m2+m+2),求出BC的直线解析式为y=﹣x+2,和过点E与BC垂直的直线解析式为y=x﹣m2+2,求出两直线交点F,则EF最大时,△CBE面积的最大;(2)可求C(0,b),B(,0),设M(t,﹣t2+t+b),利用对角线互相平分的四边形是平行四边形,则分三种情况求解:①当CM和BD为平行四边形的对角线时,=,=0,解得b=﹣1+;②当BM和CD为平行四边形的对角线时,=,=,b无解;③当BC和MD为平行四边形的对角线时,=,=,解得b=或b=﹣(舍).【详解】解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,∵C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,解得:b=﹣1+或b=﹣1﹣(舍去),∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,解得:b=或b=﹣(舍);综上所述:b=﹣1+或b=.【点睛】本题考查二次函数的综合;熟练掌握二次函数的图象及性质,熟练应用平行四边形的判定方法是解题的关键.20、(1)见解析;(2)A′(﹣3,3),B′(0,6),C′(0,3);(3).【分析】(1)延长PB到B′,使PB′=3PB,延长PA到B′,使PA′=3PA,延长PC到C′,使PC′=3PC;顺次连接A′、B′、C′,即可得到△A'B'C′;(2)利用(1)所画图形写出A′点的坐标即可;(3)利用勾股定理计算出A′B′、B′C′、A′C′,然后求它们的和即可.【详解】(1)如图,△A′B′C′,为所作;(2)A′、B′、C′三点的坐标分别是:A′(﹣3,3),B′(0,6),C′(0,3);(3)A′B′==3,A′C′==3,B′C′==3,所以△A′B′C′的周长=3+3+3=.【点睛】本题考查作图——位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.21、(1)60°;(2)【分析】(1)根据旋转的性质得到三角形ODC为等边三角形即可求解;

(2)由旋转的性质得:AD=OB=1,结合题意得到∠ADO=90°.则在Rt△AOD中,由勾股定理即可求得AO的长.【详解】(1)由旋转的性质得:CD=CO,∠ACD=∠BCO.∵∠ACB=∠ACO+∠OCB=60°,∴∠DCO=∠ACO+∠ACD=∠ACO+∠OCB=60°,∴△OCD为等边三角形,∴∠ODC=60°.(2)由旋转的性质得:AD=OB=1.∵△OCD为等边三角形,∴OD=OC=2.∵∠BOC=120°,∠ODC=60°,∴∠ADO=90°.在Rt△AOD中,由勾股定理得:AO=.【点睛】本题考查旋转的性质、等边三角形的性质和勾股定理,解题的关键是掌握旋转的性质、等边三角形的性质和勾股定理.22、(1)直线CD与⊙O相切(1)【解析】(1)直线CD与⊙O相切.如图,连接OD.∵OA=OD,∠DAB=45°,∴∠ODA=45°,∴∠AOD=90°.∵CD∥AB,∴∠ODC=∠AOD=90°,即OD⊥CD.又∵点D在⊙O上,直线CD与⊙O相切.(1)∵BC∥AD,CD∥AB,∴四边形ABCD是平行四边形,∴CD=AB=1.∴S梯形OBCD=,∴图中阴影部分的面积为S梯形OBCD-S扇形OBD=23、(1)甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【解析】分析:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方.根据题意,得解之,得答:甲、乙两队原计划平均每天的施工土方量分别为0.42万立方和0.38万立方.(2)设乙队平均每天的施工土方量至少要比原来提高z万立方.根据题意,得40(0.38+z)+110(0.38+z+0.42≥120,解之,得z≥0.112,答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.点睛:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.24、(1)详见解析;(2).【分析】(1)根据题意可以画出树状图,即可列出两人抽到的数字之积所有可能的结果;(2)根据概率公式,结合(1)中的结果即可求得两人抽到的数字之积为正数的概率.【详解】解:(1)如下图所示,;(2)由(1)可知,一共有12种可能性,两人抽到的数字之积为正数的可能性有4种,∴两人抽到的数字之积为正数的概率是:=,即两人抽到的数字之积为正数的概率是.【点睛】本题考查了用列表法(或树状图法)求概率:当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.25、(1)y=(x-1)2-1或y=x2-2x-3;(2)y=-(x-1)2+1【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论