2022-2023学年南安市数学八年级第一学期期末经典试题含解析_第1页
2022-2023学年南安市数学八年级第一学期期末经典试题含解析_第2页
2022-2023学年南安市数学八年级第一学期期末经典试题含解析_第3页
2022-2023学年南安市数学八年级第一学期期末经典试题含解析_第4页
2022-2023学年南安市数学八年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.2.不等式﹣2x>的解集是()A.x<﹣ B.x<﹣1 C.x>﹣ D.x>﹣13.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()A.21 B.22或27 C.27 D.21或274.在−2,0,3,6这四个数中,最大的数是()A.−2B.0C.3D.65.如图,把纸片沿折叠,当点落在四边形内部时,则与之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是()A. B.C. D.6.如图,在中,,点是和角平分线的交点,则等于()A. B. C. D.7.正方形的边长为,其面积记为,以为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积为,…按此规律继续下去,则的值为()A. B. C. D.8.平方根等于它本身的数是()A.0 B.1,0 C.0,1,-1 D.0,-19.如下书写的四个汉字,其中为轴对称图形的是()A. B. C. D.10.在直角坐标系中,点A(–2,2)与点B关于x轴对称,则点B的坐标为()A.(–2,2) B.(–2,–2) C.(2,–2) D.(2,2)二、填空题(每小题3分,共24分)11.如图,在四边形中,,对角线平分,连接,,若,,则_________________.12.如图在中,,,,分别以为直径作半圆,如图阴影部分面积记为、,则__________.13.已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形ABnCn的面积为.14.已知一次函数的图像经过点和,则_____(填“”、“”或“”).15.在平面直角坐标系中,点A(﹣1,0)、B(3,0)、C(0,2),当△ABC与△ABD全等时,则点D的坐标可以是_____.16.如图,在中,是边上一点,且在的垂直平分线上,若,,则_________.17.已知一次函数,当时,____________.18.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.(1)求证:△OBC≌△ABD;(2)若以A,E,C为顶点的三角形是等腰三角形,求点C的坐标.20.(6分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.21.(6分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,当△PCD的周长最小时,在图中画出点P的位置,并求点P的坐标.22.(8分)以下是小嘉化简代数式的过程.解:原式……①……②……③(1)小嘉的解答过程在第_____步开始出错,出错的原因是_____________________;(2)请你帮助小嘉写出正确的解答过程,并计算当时代数式的值.23.(8分)张明和李强两名运动爱好者周末相约进行跑步锻炼,周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的体育场入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达体育场后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=1.2,n=5时,求李强跑了多少分钟?②直接写出张明的跑步速度为多少米/分(直接用含m,n的式子表示)24.(8分)甲、乙两人分别从丙、丁两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达丁地后,乙继续前行.设出发后,两人相距,图中折线表示从两人出发至乙到达丙地的过程中与之间的函数关系.根据图中信息,求:(1)点的坐标,并说明它的实际意义;(2)甲、乙两人的速度.25.(10分)化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.26.(10分)父亲两次将100斤粮食分给兄弟俩,第一次分给哥哥的粮食等于第二次分给弟弟的2倍,第二次分给哥哥的粮食是第一次分给弟弟的3倍,求两次分粮食中,哥哥、弟弟各分到多少粮食?

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、A【解析】解:根据不等式的基本性质3,不等式两边同除以-2,即可得x<-故选A.【点睛】此题主要考查了不等式的性质,利用不等式的基本性质3解题,关键是注意两边同时乘以或除以同一个负数,不等式的符号改变.3、C【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;

当腰取11,则底边为5,则三角形的周长=11+11+5=1.

故选C.【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.4、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,∵−2<0<6∴四个数中,最大的数是3.故选C.考点:实数的大小比较.5、A【分析】画出折叠之前的部分,连接,由折叠的性质可知,根据三角形外角的性质可得∠1=,∠2=,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接由折叠的性质可知∵∠1是的外角,∠2是的外角∴∠1=,∠2=∴∠1+∠2=+===故选A.【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.6、C【分析】根据三角形的内角和定理和角平分线的定义,得到,然后得到答案.【详解】解:∵在中,,∴,∵BD平分∠ABC,DC平分∠ACB,∴,∴,∴;故选:C.【点睛】本题考查了三角形的内角和定理和角平分线的定义,解题的关键是熟练掌握所学的定理和定义进行解题,正确得到.7、A【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分Sn的值,根据数的变化找出变化规律Sn=,依此规律即可得出结论.【详解】解:在图中标上字母E,如图所示.

∵正方形ABCD的边长为1,△CDE为等腰直角三角形,

∴DE2+CE2=CD2,DE=CE,

∴S2+S2=S1.

观察,发现规律:S1=12=1,S2=S1=,S3=S2=,S4=S3=,…,

∴Sn=.

当n=5时,S5==.故选A.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律Sn=,属于中档题,难度不大,解决该题型题目时,写出部分Sn的值,根据数值的变化找出变化规律是关键.8、A【分析】由于一个正数有两个平方根,且互为相反数;1的平方根为1;负数没有平方根,利用这些规律即可解决问题.【详解】∵负数没有平方根,1的平方根为1,正数有两个平方根,且互为相反数,∴平方根等于它本身的数是1.故选:A.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.9、B【分析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:根据轴对称图形的定义可得只有“善”符合条件,故选B.【点睛】本题考查轴对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.10、B【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A(-2,2)与点B关于x轴对称,∴点B的坐标为(-2,-2).故选:B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.二、填空题(每小题3分,共24分)11、1【分析】由等腰三角形的性质和角平分线的性质可推出AD∥BC,然后根据平行线的性质和已知条件可推出CA=CD,可得CB=CA=CD,过点C作CE⊥BD于点E,CF⊥AB于点F,如图,根据等腰三角形的性质和已知条件可得DE的长和,然后即可根据AAS证明△BCF≌△CDE,可得CF=DE,再根据三角形的面积公式计算即得结果.【详解】解:∵,∴∠CBD=∠CDB,∵平分,∴∠ADB=∠CDB,∴∠CBD=∠ADB,∴AD∥BC,∴∠CAD=∠ACB,∵,,∠CBD=∠CDB,∴,∴,∴CA=CD,∴CB=CA=CD,过点C作CE⊥BD于点E,CF⊥AB于点F,如图,则,,∵,,∴,在△BCF和△CDE中,∵,∠BFC=∠CED=90°,CB=CD,∴△BCF≌△CDE(AAS),∴CF=DE=5,∴.故答案为:1.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.12、24【分析】先根据勾股定理得出以为直径的半圆面积+以为直径的半圆面积=以为直径的半圆面积,再根据以为直径的半圆面积+以为直径的半圆面积+以为直径的半圆面积,进而推出即得.【详解】∵在中,,∴∴∴以为直径的半圆面积为:以为直径的半圆面积为:以为直径的半圆面积为:∴以为直径的半圆面积+以为直径的半圆面积=以为直径的半圆面积∵以为直径的半圆面积+以为直径的半圆面积+以为直径的半圆面积∴∴故答案为:.【点睛】本题考查了勾股定理的应用,熟练掌握结论“直角三角形以两直角边为边的相似几何图形面积之和等于斜边上同形状图形面积”是快速解决选择填空题的有效方法.13、【解析】由AB1为边长为2等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形ABnCn的面积.解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形ABnCn的面积为()n.故答案为()n14、>【分析】根据一次函数图象的增减性,结合函数图象上的两点横坐标的大小,即可得到答案.【详解】∵一次函数的解析式为:,∴y随着x的增大而增大,∵该函数图象上的两点和,∵-1<2,∴y1>y2,故答案为:>.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.15、(0,﹣2)或(2,﹣2)或(2,2)【分析】根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案.【详解】解:∵△ABC与△ABD全等,如图所示:点D坐标分别为:(0,﹣2)或(2,﹣2)或(2,2).故答案为:(0,﹣2)或(2,﹣2)或(2,2).【点睛】本题考查三角形全等的判定和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解题的关键.16、33【分析】根据等腰三角形的性质,可得,由三角形内角和定理,求得,再由垂直平分线的性质,结合外角性质,可求得即得.【详解】,由三角形内角和,,在的垂直平分线上,,利用三角形外角性质,,故答案为:33.【点睛】考查了等腰三角形的性质,三角形内角和的定理,以及垂直平分线的性质和外角性质,通过关系式找到等角进行代换是解题关键,注意把几何图形的性质内容要熟记.17、【分析】把代入即可求解.【详解】把代入一次函数得-1=-2x+3解得x=2,故填:2.【点睛】此题主要考查一次函数的性质,解题的关键是熟知坐标与函数的关系.18、1【分析】连接,由于是等腰三角形,点是边的中点,故,根据三角形的面积公式求出的长,再根据是线段的垂直平分线可知,点关于直线的对称点为点,故的长为的最小值,由此即可得出结论.【详解】解:连接,是等腰三角形,点是边的中点,,,解得,是线段的垂直平分线,点关于直线的对称点为点,的长为的最小值,的周长最短.故答案为:1.【点睛】本题考查的是轴对称最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题(共66分)19、(1)见解析;(2)以A,E,C为顶点的三角形是等腰三角形时,点C的坐标为(3,0)【分析】(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;

(2)先根据全等三角形的性质以及等边三角形的性质,求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.【详解】(1)∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠OBA=∠CBD=60°,∴∠OBC=∠ABD,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(2)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,

∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,

∵在Rt△AOE中,OA=1,∠OEA=30°,

∴AE=2,

∴AC=AE=2,

∴OC=1+2=3,

∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质的运用,坐标与图形,等腰三角形的判定和性质.解决本题的关键是利用等腰三角形的性质求出点C的坐标.20、(1)y=x+;(2)C点坐标为(,0),D点坐标为(0,),(3).【解析】分析:(1)先把A点和B点坐标代入y=kx+b得到关于k、b的方程组,解方程组得到k、b的值,从而得到一次函数的解析式;(2)令x=0,y=0,代入y=x+即可确定C、D点坐标;(3)根据三角形面积公式和△AOB的面积=S△AOD+S△BOD进行计算即可.详解:(1)把A(-2,-1),B(1,3)代入y=kx+b得,解得,.所以一次函数解析式为y=x+;(2)令y=0,则0=x+,解得x=-,所以C点的坐标为(-,0),把x=0代入y=x+得y=,所以D点坐标为(0,),(3)△AOB的面积=S△AOD+S△BOD=××2+××1=.点睛:本题考查了待定系数法求一次函数解析式:①先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;②将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.21、图见详解;(,)【分析】过作于,延长到,使,连接,交于,连接,的值最小,即可得到点;通过和点的坐标,运用待定系数法求出直线的函数表达式,再通过和点的坐标,运用待定系数法求出直线的函数表达式,联合两个表达式解方程组求出交点坐标即可.【详解】解:如图所示,过作于,延长到,使,连接,交于,连接;∵△PCD的周长=∴时,可取最小值,图中点即为所求;又∵BD=3,DC=1∴平面直角坐标系中每一个小方格的边长为1,即:A(5,4),B(1,0),D(4,0),E(1,4)设直线的解析式为,代入点和得:解得:∴设直线的解析式为,代入点和得:解得:∴∴联合两个一次函数可得:∴解得∴(,)【点睛】本题主要考查了轴对称最短路径的画法,待定系数法求一次函数解析式,两直线的交点与二元一次方程组的解,求出一次函数的解析式组建二元一次方程组是解题的关键.22、(1)②;去括号时-y2没变号;(2)解答过程见解析,代数式化简为3y2-4xy,值为1【分析】(1)依据完全平方公式、平方差公式、去括号法则、合并同类项法则进行判断即可;

(2)依据去括号法则、合并同类项法则进行化简,然后将4x=3y代入,最后,再合并同类项即可.【详解】解:(1)②出错,原因:去括号时-y2没变号;

故答案为:②;去括号时-y2没变号.

(2)正确解答过程:

原式=(x2-4xy+4y2)-(x2-y2)-2y2,

=x2-4xy+4y2-x2+y2-2y2,

=3y2-4xy.

当4x=3y时,原式3y2-3y2=1.【点睛】本题主要考查的是整式的混合运算,熟练掌握相关法则是解题的关键.23、(1)李强的速度为80米/分,张明的速度为1米/分;(2)①李强跑了2分钟;②张明的速度为米/分.【分析】(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据时间=路程÷速度结合两人同时到达,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)①设张明的速度为y米/分,则李强的速度为1.2y米/分,根据李强早到5分钟,即可得出关于y的分式方程,解方程即可;②设张明的速度为y米/分,则李强的速度为my米/分,根据李强早到n分钟,即可得出关于y的分式方程,解方程即可.【详解】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,依题意,得:=,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+220=1.答:李强的速度为80米/分,张明的速度为1米/分.(2)①设张明的速度为y米/分,则李强的速度为1.2y米/分,依题意,得:-=5,解得:y=200,经检验,y=200是原方程的解,且符合题意,∴=2.答:李强跑了2分钟.②设张明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论