版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若x>y,则下列式子错误的是()A.x﹣2>y﹣2 B. C.﹣x<﹣y D.1﹣x>1﹣y2.如图所示,将三角尺的直角顶点放在直尺的一边上,,,则等于()A. B. C. D.3.将长度为5cm的线段向上平移10cm所得线段长度是()A.10cm B.5cm C.0cm D.无法确定4.对于任意三角形的高,下列说法不正确的是()A.锐角三角形的三条高交于一点B.直角三角形只有一条高C.三角形三条高的交点不一定在三角形内D.钝角三角形有两条高在三角形的外部5.如图,下列各式中正确的是()A. B.C. D.6.下列说法不正确的是(
)A.调查一架“歼20”隐形战机各零部件的质量,应采用抽样调查B.一组数据2,2,3,3,3,4的众数是3C.如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是7D.一组数据1,2,3,4,5的方差是2,那么数据11,12,13,14,15的方差也是27.已知如图,平分,于点,点是射线上的一个动点,若,,则的最小值是()A.2 B.3 C.4 D.不能确定8.下列命题是假命题的是()A.对顶角相等 B.同位角相等 C.同角的余角相等 D.三角形的三个外角和为360°9.因式分解(x+y)2﹣2(x2﹣y2)+(x﹣y)2的结果为()A.4(x﹣y)2 B.4x2 C.4(x+y)2 D.4y210.下列说法错误的是()A.边长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形全等D.形状和大小完全相同的两个三角形全等11.若等腰三角形的两边长分别4和6,则它的周长是()A.14 B.15 C.16 D.14或1612.若关于的分式方程无解,则的值是()A.或 B. C. D.或二、填空题(每题4分,共24分)13.如图,已知△ABC的面积为12,将△ABC沿BC平移到△A'B'C',使B'和C重合,连接AC'交A'C于D,则△C'DC的面积为_____14.若,,则代数式的值为__________.15.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛16.等腰三角形一腰上的高与另一腰的夹角为20°,则该等腰三角形的底角的度为______.17._______.18.计算:=__________;=___________三、解答题(共78分)19.(8分)如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.20.(8分)阅读下列计算过程,回答问题:解方程组解:①,得,③②③,得,.把代入①,得,,.∴该方程组的解是以上过程有两处关键性错误,第一次出错在第_______步(填序号),第二次出错在第________步(填序号),以上解法采用了__________消元法.21.(8分)已知y与x﹣2成正比例,且当x=﹣4时,y=﹣1.(1)求y与x的函数关系式;(2)若点M(5.1,m)、N(﹣1.9,n)在此函数图像上,判断m与n的大小关系.22.(10分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的平分线,交BC于点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BD=5,CD=3,求AC的长.23.(10分)某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案:方案一:第一次提价p%,第二次提价q%;方案二:第一、二次均提价%;如果设原价为1元,(1)请用含p,p的式子表示提价后的两种方案中的产品价格;(2)若p、q是不相等的正数,设p%=m,q%=n,请你通过演算说明:这两种方案,哪种方案提价多?24.(10分)通过小学的学习我们知道,分数可分为“真分数”和“假分数”,并且假分数都可化为带分数.类比分数,对于分式也可以定义:对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:解决下列问题:(1)分式是________分式(填“真”或“假”);(2)假分式可化为带分式_________的形式;请写出你的推导过程;(3)如果分式的值为整数,那么的整数值为_________.25.(12分)已知的平方根是,3是的算术平方根,求的立方根.26.如图,平面直角坐标系xoy中A(﹣4,6),B(﹣1,2),C(﹣4,1).(1)作出△ABC关于直线x=1对称的图形△A1B1C1并写出△A1B1C1各顶点的坐标;(2)将△A1B1C1向左平移2个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△ABC和△A2B2C2,它们是否关于某直线对称?若是,请指出对称轴,并求△ABC的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据不等式的基本性质逐一判断即可.【详解】解:A.∵x>y,∴x﹣2>y﹣2,故本选项不符合题意;B.∵x>y,∴,故本选项不符合题意;C.∵x>y,∴﹣x<﹣y,故本选项不符合题意;D.∵x>y,∴﹣x<﹣y,∴1﹣x<1﹣y,故本选项符合题意;故选:D.【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解题关键.2、A【分析】先根据平行线的性质得到,然后根据三角形外角的性质有,最后利用即可求解.【详解】如图∵,.,∴.故选:A.【点睛】本题主要考查平行线的性质及三角形外角的性质,掌握平行线的性质及三角形外角的性质是解题的关键.3、B【详解】解:平移不改变图形的大小和形状.故线段长度不变,仍为5cm.故选:B.4、B【分析】根据三角形的高的概念,通过具体作高,发现:任意一个三角形都有三条高,其中锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部,据此解答即可.【详解】解:A、锐角三角形的三条高交于一点,说法正确,故本选项不符合题意;
B、直角三角形有三条高,说法错误,故本选项符合题意;
C、三角形三条高的交点不一定在三角形内,说法正确,故本选项不符合题意;
D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;
故选:B.【点睛】本题考查了三角形的高:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,注意不同形状的三角形的高的位置.5、D【解析】试题分析:延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D.考点:平行线的性质.6、A【分析】根据抽样调查和全面调查的区别、众数、平均数和方差的概念解答即可.【详解】A、调查一架隐形战机的各零部件的质量,要求精确度高的调查,适合普查,错误;B、一组数据2,2,3,3,3,4的众数是3,正确;C、如果x1与x2的平均数是4,那么x1+1与x2+5的平均数(x1+1+x2+5)÷2=(4+1+4+5)÷2=7,正确;D、一组数据1,2,3,4,5的方差是2,那么把每个数据都加同一个数后得到的新数据11,12,13,14,15的方差也是2,正确;故选A【点睛】本题考查了抽样调查和全面调查的区别、众数、平均数和方差的意义,熟练掌握各知识点是解答本题的关键.选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、A【分析】根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.【详解】解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,
∵OP平分∠MON,PA⊥ON,PQ⊥OM,
∴PA=PQ,
∵∠AOP=∠MON=30°,
∴PA=2,
∴PQ=2.
故选:A.【点睛】此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置是解题的关键.8、B【分析】由题意根据对顶角的概念、同位角的定义、余角、三角形外角和的概念判断.【详解】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,则同位角相等是假命题;C、同角的余角相等,是真命题;D、三角形的三个外角和为360°,是真命题.故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉相关的性质定理.9、D【分析】利用完全平方公式进行分解即可.【详解】解:原式=[(x+y)﹣(x﹣y)]1,=(x+y﹣x+y)1,=4y1,故选:D.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式a1±1ab+b1=(a±b)1.10、C【分析】根据三条边相等三个角相等可对A进行判断;利用SAS可对B进行判断;根据全等的条件可对C进行判断;根据全等的定义可对D进行判断.【详解】A.三条边都相等且三个都相等,能完全重合,该选项正确;B.两条直角边对应相等且夹角都等于90,符合SAS,该选项正确;C.不满足任何一条全等的判定条件,该选项错误;D.形状和大小完全相同的两个三角形完全重合,该选项正确.故选:C.【点睛】本题考查了全等三角形的概念和三角形全等的判定,其中结合特殊三角形的性质得出判定全等的条件是解决问题的关键..11、D【解析】根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选D.12、A【分析】分式方程去分母转化为整式方程,由分式方程无解,得到最简公分母为0,求出x的值,代入整式方程求出m的值即可.【详解】解:方程去分母得:-(x+m)+x(x+1)=(x+1)(x-1),由分式方程无解,得到,解得:x=1或x=-1,
把x=1代入整式方程得:m=6;
把x=-1代入整式方程得:m=1.
故选:A.【点睛】本题考查分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.二、填空题(每题4分,共24分)13、1.【解析】根据平移变换只改变图形的位置,不改变图形的形状与大小,可得∠B=∠A′CC′,BC=B′C′,再根据同位角相等,两直线平行可得CD∥AB,然后求出CD=AB,点C′到A′C的距离等于点C到AB的距离,根据等高的三角形的面积的比等于底边的比即可求解.【详解】解:根据题意得,∠B=∠A′CC′,BC=B′C′,∴CD∥AB,CD=AB(三角形的中位线),∵点C′到A′C的距离等于点C到AB的距离,∴△C′DC的面积=△ABC的面积=×12=1.故答案为1.【点睛】本题考查了平移变换的性质,平行线的判定与性质,三角形的中位线等于第三边的一半的性质,以及等高三角形的面积的比等于底边的比,是小综合题,但难度不大.14、-12【解析】分析:对所求代数式进行因式分解,把,,代入即可求解.详解:,,,故答案为点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.15、15【分析】单循环制:每个班都要和其他5个班赛一场,共赛6×5=30场,由于两个班只赛一场,去掉重复计算的情况,实际只赛:30÷2=15场,据此解答.【详解】解:根据题意,得(61)×6÷2,=30÷2,=15(场),答:如果釆用淘汰制,需安排5场比赛;如果釆用单循环制,一共安排15场比赛.【点睛】本题考查了握手问题的实际应用,要注意去掉重复计算的情况,如果选手比较少可以用枚举法解答,如果个选手比较多可以用公式:单循环制:比赛场数=n(n-1)÷2;淘汰制:比赛场数=n-1解答.16、55°或35°.【分析】根据等腰三角形的性质及三角形内角和定理进行分析,注意分类讨论思想的运用.【详解】如图①,∵AB=AC,∠ABD=20°,BD⊥AC于D,∴∠A=70°,∴∠ABC=∠C=(180°-70°)÷2=55°;如图②,∵AB=AC,∠ABD=20°,BD⊥AC于D,∴∠BAC=20°+90°=110°,∴∠ABC=∠C=(180°-110°)÷2=35°.故答案为55°或35°.【点睛】此题主要考查等腰三角形的性质,三角形内角和定理及三角形外角的性质,进行分类讨论是解题的关键.17、1【分析】根据负整数指数幂,零指数幂,整数指数幂的运算法则计算即可.【详解】原式=+1-=1,故答案为:1.【点睛】本题考查了实数的运算,掌握负整数指数幂,零指数幂,整数指数幂的运算法则是解题关键.18、1,【分析】直接运用零次幂和负整数次幂的性质解答即可.【详解】解:=1,故答案为1,.【点睛】本题考查了零次幂和负整数次幂的性质,掌握相关性质成为解答本题的关键.三、解答题(共78分)19、(1)证明见解析;(1)2;(3)CD1+CE1=BC1,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.
(1)先求出∠CDA=∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.
(3)方法1、同(1)的方法即可得出结论;方法1、先判断出CD1+CE1=1(AP1+CP1),再判断出CD1+CE1=1AC1.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(1)如图1,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=∠ADE=×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD===2.(3)CD1、CE1、BC1之间的数量关系为:CD1+CE1=BC1,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=42°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=42°,∴∠BEC=∠BEA+∠AED=42°+42°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC1=BE1+CE1.∴BC1=CD1+CE1.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD1=(CP+PD)1=(CP+AP)1=CP1+1CP•AP+AP1,CE1=(EP﹣CP)1=(AP﹣CP)1=AP1﹣1AP•CP+CP1,∴CD1+CE1=1AP1+1CP1=1(AP1+CP1),∵在Rt△APC中,由勾股定理可知:AC1=AP1+CP1,∴CD1+CE1=1AC1.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB1+AC1=BC1,即1AC1=BC1,∴CD1+CE1=BC1.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(1)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.20、(1);(2);加减.【分析】逐步分析解题步骤,即可找出错误的地方;本解法采用了加减消元法进行求解.【详解】第一步中,①,得,③等式右边没有2,应该为③第二步中,②③,得,应该为,,根据题意,得此解法是加减消元法;故答案为:(1);(2);加减.【点睛】此题主要考查利用加减消元法解二元一次方程组,熟练掌握,即可解题.21、(2)y=x-2;(2)m>n.
【分析】(2)首先根据题意设出关系式:y=k(x-2),再利用待定系数法把x=-4,y=-2代入,可得到k的值,再把k的值代入所设的关系式中,可得到答案;(2)利用一次函数图象上点的坐标特征可求出m,n的值,比较后即可得出结论.【详解】解:∵y与x-2成正比例,
∴关系式设为:y=k(x-2),
∵x=-4时,y=-2,
∴-2=k(-4-2),
解得:k=,
∴y与x的函数关系式为:y=(x-2)=x-2.
故答案为:y=x-2;(2)∵点M(5.2,m)、N(﹣2.9,n)是一次函数y=x-2图象上的两个点,
∴m=×5.2-2=2.55,n=×(-2.9)-2=-2.3.
∵2.55>-2.3,
∴m>n.【点睛】本题考查了待定系数法求一次函数关系式和一次函数图象上点的坐标特征,关键是设出关系式,代入x,y的值求k是解题的关键.22、(1)见解析;(2)6.【分析】(1)先以A为圆心,小于AC长为半径画弧,交AC,AB运用H、F;再分别以H、F为圆心,大于HF长为半径画弧,两弧交于点M,最后画射线AM交CB于D;(2)过点D作DE⊥AB,垂足为E,先证明△ACD≌△AED得到AC=AE,CD=DE=3,再由勾股定理得求的BE长,然后在Rt△ABC中,设AC=x,则AB=AE+BE=x+4,最后再次运用勾股定理求解即可.【详解】解:(1)如图:(2)过点D作DE⊥AB,垂足为E.则∠AED=∠BED=90°∵AD平分∠BAC∴CD=DE在RtACD和RtAED中CD=DE,AD=AD∴△CDE≌△AED(HL)∴AC=AE,CD=DE=3在Rt△BDE中,由勾股定理得:DE2+BE2=BD2∴BE2=BD2-DE2=52-32=16.∴BE=4在Rt△ABC中,设AC=x,则AB=AE+BE=x+4.由勾股定理得:AC2+BC2=AB2,即x2+82=(x+4)2解得:x=6,即AC=6.【点睛】本题主要考查了作角平分线、以及角平分线的性质、勾股定理的应用、全等三角形的判定和性质.解题的关键在于作出角平分线并利用其性质证明三角形全等.23、(1)方案一元;方案二:(1+%)2元;(2)方案二提价多.【分析】(1)根据各方案中的提价百分率,即可得到答案;(2)用方案二的产品价格减去方案一的产品价格,利用完全平方公式及多项式乘以多项式的法则化简,去括号合并后再利用完全平方公式变形即可判断.【详解】(1)方案一:元;方案二:(1+%)2元;(2)方案二价多.理由:∵方案一:,方案二:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版高科技产品出口许可与合同履行协议3篇
- 二零二五版国际贸易合同担保法风险管理合同3篇
- 碎石加工设备2025年度保险合同2篇
- 二零二五版企业员工劳务派遣与员工福利保障合同3篇
- 二零二五年度粮食储备与农业产业化合作合同3篇
- 二零二五年度高层综合楼公共收益分配管理合同3篇
- 二零二五年度校车运营服务与儿童座椅安全检测合同3篇
- 二零二五版带储藏室装修包售二手房合同范本3篇
- 二零二五年房地产合作开发与股权让渡综合合同2篇
- 二零二五年度花木种植与生态农业园区建设合同3篇
- 2024年高标准农田建设土地承包服务协议3篇
- 阅读理解(专项训练)-2024-2025学年湘少版英语六年级上册
- 2024-2025学年人教版数学六年级上册 期末综合试卷(含答案)
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 医院患者伤口换药操作课件
- 欠薪强制执行申请书
- 矿山年中期开采重点规划
- 资源库建设项目技术规范汇编0716印刷版
- GC2级压力管道安装质量保证体系文件编写提纲
- 预应力混凝土简支小箱梁大作业计算书
评论
0/150
提交评论