版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若a+b=7,ab=12,则a-b的值为()A.1 B.±1 C.2 D.±22.若分式2x-3有意义,则x的取值范围是(A.x>3 B.x=3 C.x≠3 D.x<33.若一个多边形的内角和是1080°,则此多边形的边数是()A.十一 B.十 C.八 D.六4.下列二次根式中的最简二次根式是()A. B. C. D.5.若关于的方程的解为,则等于()A. B.2 C. D.-26.下列多项式中,能分解因式的是()A. B. C. D.7.当x时,分式的值为0()A.x≠- B.x=- C.x≠2 D.x=28.已知a、b、c是三角形的三边长,若满足,则这个三角形的形状是()A.等腰三角形 B.等边三角形 C.锐角三角形 D.直角三角形9.计算的结果是()A. B. C.a-b D.a+b10.下列选项所给条件能画出唯一的是()A.,, B.,,C., D.,,二、填空题(每小题3分,共24分)11.已知数据,,,,0,其中正数出现的频率是_________.12.在等腰中,AB为腰,AD为中线,,,则的周长为________.13.已知点P(1﹣a,a+2)关于y轴的对称点在第二象限,则a的取值范围是______.14.如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=度.15.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.16.如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,图中包括实线、虚线在内共有全等三角形______对17.在平面直角坐标系中,若点到原点的距离是,则的值是________.18.函数的定义域____.三、解答题(共66分)19.(10分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.20.(6分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量(千瓦时)关于已行驶路程(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当时,求1千瓦时的电量汽车能行驶的路程;(2)当时求关于的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.21.(6分)△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)求△A1B1C1的面积.22.(8分)分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,.(1)将假分式化为一个整式与一个真分式的和是;(2)将假分式化为一个整式与一个真分式的和;(3)若分式的值为整数,求整数x的值.23.(8分)我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如(1),与都是等腰三角形,其中,则△ABD≌△ACE(SAS).(1)熟悉模型:如(2),已知与都是等腰三角形,AB=AC,AD=AE,且,求证:;(2)运用模型:如(3),为等边内一点,且,求的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以为边构造等边,这样就有两个等边三角形共顶点,然后连结,通过转化的思想求出了的度数,则的度数为度;(3)深化模型:如(4),在四边形中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,求的长.24.(8分)已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC,求证:BC=DE25.(10分)甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),、与甲班植树的时间x(时),之间的部分函数图象如图所示.(1)当时,分别求、与x之间的函数关系式;(2)若甲班植树6个小时后,该班仍保持原来的工作效率,乙班则通过加人数提高了工作效率,这样又植树2小时后,两班植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵?26.(10分)如图,在等边△ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E(点E不与点A重合).(1)若∠CAP=20°.①求∠AEB=°;②连结CE,直接写出AE,BE,CE之间的数量关系.(2)若∠CAP=α(0°<α<120°).①∠AEB的度数是否发生变化,若发生变化,请求出∠AEB度数;②AE,BE,CE之间的数量关系是否发生变化,并证明你的结论.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据进行计算即可得解.【详解】根据可知,则,故选:B.【点睛】本题主要考查了完全平方式的应用,熟练掌握完全平方式的相关公式是解决本题的关键.2、C【解析】根据分式成立的条件求解.【详解】解:由题意可知x-3≠0解得x≠3故选:C.【点睛】本题考查分式成立的条件,掌握分母不能为零是解题关键.3、C【分析】n边形内角和公式为:°,据此进一步求解即可.【详解】设该多边形的边数为n,则:°=1080°,解得:,∴该多边形的边数为8,故选:C.【点睛】本题主要考查了多边形的内角和公式,熟练掌握相关公式是解题关键.4、A【分析】根据最简二次根式的概念判断即可.【详解】A、是最简二次根式;B、,不是最简二次根式;
C、,不是最简二次根式;
D、,不是最简二次根式;
故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5、A【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含a的新方程,解此新方程可以求得a的值.【详解】把x=1代入方程得:,解得:a=;经检验a=是原方程的解;故选A.【点睛】此题考查分式方程的解,解题关键在于把x代入解析式掌握运算法则.6、D【分析】根据因式分解的各个方法逐一判断即可.【详解】解:A.不能因式分解,故本选项不符合题意;B.不能因式分解,故本选项不符合题意;C.不能因式分解,故本选项不符合题意;D.,能因式分解,故本选项符合题意.故选D.【点睛】此题考查的是因式分解,掌握因式分解的各个方法是解决此题的关键.7、D【分析】分式的值为的条件是:(1)分子等于零;(2)分母不等于零.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:∵分式的值为∴∴.故选:D【点睛】本题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为这个条件.8、D【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【详解】∵(a-6)2≥0,≥0,|c-10|≥0,∴a-6=0,b-8=0,c-10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故选D.【点睛】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.9、B【分析】先算小括号里的,再算乘法,约分化简即可.【详解】解:==故选B.【点睛】本题考查分式的混合运算.10、B【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A、3+4<8,不能构成三角形,故A错误;B、,,,满足ASA条件,能画出唯一的三角形,故B正确;C、,,不能画出唯一的三角形,故C错误;D、,,,不能画出唯一的三角形,故D错误;故选:B.【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.二、填空题(每小题3分,共24分)11、0.4【分析】上面五个数中,共有2个正数,故可以求得正数出现的频率.【详解】解:∵共五个数中,共有2个正数,∴正数出现的频率为:2÷5=0.4故答案为:0.4【点睛】考查频率的计算.熟记公式是解决本题的关键.12、12或10.1.【分析】如图1,根据等腰三角形的性质得到AD⊥BC,由勾股定理得到BD=4,于是得到△ABD的周长为12,如图2,在等腰△ABC中,AB=BC,求得BD=2.1,于是得到△ABD的周长为10.1.【详解】解:如图1,在等腰△ABC中,AB=AC,∵AD为中线,∴AD⊥BC,∴BD=,∴△ABD的周长=1+4+3=12,如图2,在等腰△ABC中,AB=BC,∵AD为中线,∴BD=BC=2.1,∴△ABD的周长=1+3+2.1=10.1,综上所述,△ABD的周长为12或10.1,故答案为:12或10.1.【点睛】本题考查了等腰三角形的性质以及勾股定理的应用,正确的分情况讨论是解题的关键.13、.【解析】试题分析:点P关于轴的对称点在第二象限,在P在第一象限,则考点:关于轴、轴对称的点的坐标.14、1.【解析】试题分析:根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=1°.解:∵△ABC是等边三角形∴∠A=∠ACB=1°,AC=BC∵AD=CE∴△ADC≌△CEB∴∠ACD=∠CBE∴∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=1°.故答案为1.考点:等边三角形的性质;全等三角形的判定与性质.15、AD的中点【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AD的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.16、4【分析】共有四对,分别是△ABD≌△CDB,△ABD≌△C'DB,△DCB≌△C'DB,△AOB≌△C'OD.【详解】∵四边形ABCD是长方形,∴∠A=∠C=90°,AB=CD,AD=BC,∴△ABD≌△CDB(HL),∵△BDC是将长方形纸牌ABCD沿着BD折叠得到的,∴BC'=AD,BD=BD,∠C'=∠A,∴△ABD≌△C'DB(HL),同理△DCB≌△C'DB,∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,∴△AOB≌△C'OD(AAS),所以共有四对全等三角形.故答案为4.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17、3或-3【分析】根据点到原点的距离是,可列出方程,从而可以求得x的值.【详解】解:∵点到原点的距离是,∴,解得:x=3或-3,故答案为:3或-3.【点睛】本题考查了坐标系中两点之间的距离,解题的关键是利用勾股定理列出方程求解.18、.【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x的取值即可.【详解】根据题意得,解得,故答案为:.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.三、解答题(共66分)19、(1)一共调查了300名学生.(2)(3)体育部分所对应的圆心角的度数为48°.(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.【分析】(1)用文学的人数除以所占的百分比计算即可得解.(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.(3)用体育所占的百分比乘以360°,计算即可得解.(4)用总人数乘以科普所占的百分比,计算即可得解.【详解】解:(1)∵90÷30%=300(名),∴一共调查了300名学生.(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.补全折线图如下:(3)体育部分所对应的圆心角的度数为:×360°=48°.(4)∵1800×=1(名),∴1800名学生中估计最喜爱科普类书籍的学生人数为1.20、(1)1千瓦时可行驶6千米;(2)当时,函数表达式为,当汽车行驶180千米时,蓄电池剩余电量为20千瓦时.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y关于x的函数表达式,再把x=180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】(1)由图像可知,蓄电池剩余电量为35千瓦时时汽车行驶了150千米.1千瓦时可行驶千米.(2)设,把点,代入,得,∴,∴.当时,.答:当时,函数表达式为,当汽车行驶180千米时,蓄电池剩余电量为20千瓦时.【点睛】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.21、(1)见解析;(2)6.2【分析】(1)作出△ABC各个顶点关于y轴对称的对应点,顺次连接起来,即可;(2)利用△A1B1C1所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:3×2﹣×1×2﹣×2×3﹣×2×3=6.2.【点睛】本题主要考查图形的轴对称变换,掌握轴对称变换的定义以及割补法求面积,是解题的关键.22、(1)1+;(2)2﹣;(3)x=﹣2或1.【分析】逆用同分母分式加减法法则,仿照题例做(1)(2);(3)先把分式化为真分式,根据值为整数,x的值为整数确定x的值.【详解】解:(1)==故答案为:(2)==﹣=2﹣;(3)===x﹣1+,∵分式的值为整数,且x为整数,∴x+1=±1,∴x=﹣2或1.【点睛】本题考查了真分式及分式的加减法.理解题例和题目给出的定义是解决问题的关键.23、(1)见解析;(2)150°;(3)【分析】(1)根据“SAS”证明△ABD≌△ACE即可;(2)根据小明的构造方法,通过证明△BAP≌△BMC,可证∠BPA=∠BMC,AP=CM,根据勾股定理的逆定理得到∠PMC=90°,于是得到结论;(3)根据已知可得△ABC是等腰直角三角形,所以将△ADB绕点A逆时针旋转90°,得到△ACE,则BD=CE,证明△DCE是直角三角形,再利用勾股定理可求CE值.【详解】(1)∵,∴,在△ABD和△ACE中,∵,,AD=AE,∴△ABD≌△ACE,∴;(2)由小明的构造方法可得,BP=BM=PM,∠PBM=∠PMB=60°,∴∠ABP=∠CBM,又∵AB=BC,∴△BAP≌△BMC,∴∠BPA=∠BMC,AP=CM,∵,∴,设CM=3x,PM=4x,PC=5x,∵(5x)2=(3x)2+(4x)2,∴PC2=CM2+PM2,∴△PCM是直角三角形,∴∠PMC=90°,∴∠BPA=∠BMC=60°+90°=150°;(3)∵∠ACB=∠ABC=45°,∴∠BAC=90°,且AC=AB.将△ADB绕点A顺时针旋转90°,得到△ACE,∴AD=AE,∠DAE=90°,BD=CE.∴∠EDA=45°,DE=AD=4.∵∠ADC=45°,∴∠EDC=45°+45°=90°.在Rt△DCE中,利用勾股定理可得,CE=,∴BD=CE=.【点睛】本题综合考查了旋转的性质,等边三角形的性质,勾股定理及其逆定理,以及全等三角形的判定与性质等知识点.旋转变化前后,对应角、对应线段分别相等,图形的大小、形状都不变.24、证明见解析【分析】根据由两个角和其中一角的对边相等的两个三角形全等证明△ABC≌△CDE,由全等三角形的性质即可得到BC=DE.【详解】证明:∵AB∥EC,∴∠A=∠ECA,在△ABC和△CDE中∴△ABC≌CDE(AAS),∴BC=DE.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应角相等、对应边相等).25、(1)y甲=1x,y乙=10x+30;(2)乙班增加人数后平均每小时植树45棵或2棵.【分析】(1)通过看图,分析各数据,利用待定系数法即可求得函数关系式;(2)相差1棵有两种情况,可以是甲比乙多,也可以是乙比甲多,据此分别列出方程求解即可.【详解】解:(1)设y甲=k1x,将(6,11)代入,得k1=1;
∴y甲=1x;
当x=3时,y甲=60,
设y乙=k2x+b,分别将(0,30),(3,60),解得:,故y乙=10x+30;(2)设乙班增加人数后平均每小时植树a棵.
当乙班比甲班多植树1棵时,有(6×10+30+2a)-1×8=1.
解得a=45;
当甲班比乙班多植树1棵时,有1×8-(6×10+30+2a)=1.
解得a=2.
所以乙班增加人数后平均每小时植树45棵或2棵.【点睛】本题考查一次函数的应用.(1)读懂图象信息,用待定系数法求函数解析式.(2)植树总量相差1棵要分:甲比乙多和乙比甲多两种情况讨论.此问学生可能考虑不全.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB13457-92肉类加工工业水污染物排放标准
- 通信学习通信线路设计
- 铁矿资源的持续利用与保护考核试卷
- 零售业新零售模式下的顾客关系管理考核试卷
- 电视设备的多语言支持与本地化考核试卷
- 马匹饲养与饲料中色素添加考核试卷
- 羽绒制品生产过程中的安全管理考核试卷
- 非金属矿产品市场供需分析与预测考核试卷
- 锡矿选矿厂库存控制与成本降低考核试卷
- 铝矿开采对土壤环境的影响考核试卷
- 2024中考语文《水浒传》历年真题(解析版)
- 接地电阻测试仪的操作课件
- 《机修工基础培训》课件
- 品质黄焖鸡加盟活动策划
- DLT 754-2013 母线焊接技术规程
- 部编版小学道德与法治五年级上册单元复习课件(全册)
- 仙桃市仙桃市2023-2024学年七年级上学期期末数学检测卷(含答案)
- 智慧农场整体建设实施方案
- 航空公司个人年终总结(共12篇)
- 产品供货方案、售后服务方案
- 苏教版小学数学六年级上册第4单元解决问题的策略重难点练习【含答案】
评论
0/150
提交评论