




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.要使分式有意义,x的取值应满足()A.x≠1 B.x≠﹣2 C.x≠1或x≠﹣2 D.x≠1且x≠﹣22.如图,已知的大小为,是内部的一个定点,且,点,分别是、上的动点,若周长的最小值等于,则的大小为()A. B. C. D.3.已知是二元一次方程的一组解,则的值为().A. B. C.5 D.4.如图,将两个全等的直角三角尺ABC和ADE如图摆放,∠CAB=∠DAE=90°,∠ACB=∠DEA=30°,使点D落在BC边上,连结EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④△ACE为等边三角形.其中正确的是()A.①②③ B.①②④ C.②③④ D.①②③④5.估计5﹣的值应在()A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间6.如图,已知为等腰三角形,,将沿翻折至为的中点,为的中点,线段交于点,若,则()A. B. C. D.7.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣48.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,共有学生人数为()A.6 B.5 C.6或5 D.49.下列运算中正确的是()A. B. C. D.10.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A.2 B.4 C.6 D.3二、填空题(每小题3分,共24分)11.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.12.命题“对顶角相等”的逆命题是__________.13.如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是_______.14.若,则的值为______.15.若x2-y2=-1.则(x-y)2019(x+y)2019=________________.16.因式分解:_________.17.比较大小:.18.若,,则=_____.三、解答题(共66分)19.(10分)如图,直线的解析表达式为,且与轴交于点.直线经过点,直线交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)在轴上求作一点,使的和最小,直接写出的坐标.20.(6分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+=1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证:CF=BC;②直接写出点C到DE的距离.21.(6分)先化简:÷,再从-2<x<2的范围内选取一个合适的x的整数值代入求值.22.(8分)先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.23.(8分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF,证明:CF=EB.24.(8分)如图,已知线段,求作,使(使用直尺和圆规,并保留作图痕迹).25.(10分)(1)解方程:;(2)列分式方程解应用题:用电脑程序控制小型赛车进行比赛,“畅想号”和“逐梦号”两赛车进入了最后的决赛.比赛中,两车从起点同时出发,“畅想号”到达终点时,“逐梦号”离终点还差.从赛后数据得知两车的平均速度相差.求“畅想号”的平均速度.26.(10分)(1)计算:(11a3﹣6a1+3a)÷3a﹣1;(1)因式分解:﹣3x3+6x1y﹣3xy1.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据分式的分母不为0来列出不等式,解不等式即可得到答案.【详解】解:由题意得,(x+2)(x﹣1)≠0,解得,x≠1且x≠﹣2,故选:D.【点睛】本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.2、A【分析】作P点关于OA的对称点C,关于OB的对称点D,当点E、F在CD上时,△PEF的周长最小,根据CD=2可求出的度数.【详解】解:如图作P点关于OA的对称点C,关于OB的对称点D,连接CD,交OA于点E,交OB于点F,此时,△PEF的周长最小;连接OC,OD,PE,PF∵点P与点C关于OA对称,∴OA垂直平分PC,,PE=CE,OC=OP,同理可得,∴,∴∵△PEF的周长为,∴△OCD是等边三角形,∴故本题最后选择A.【点睛】本题找到点E、F的位置是解题的关键,要使△PEF的周长最小,通常是把三边的和转化为一条线段进行解答.3、B【分析】将代入计算即可.【详解】解:将代入得,解得故选:B.【点睛】本题考查了已知二元一次方程的解求参数问题,正确将方程的解代入方程计算是解题的关键.4、B【分析】先利用旋转的性质得到AB=AC,AC=AE,则可判断△ABD为等边三角形,所以∠BAD=∠ADB=60°,则∠EAC=∠BAD=60°,再计算出∠DAC=30°,于是可对①进行判断;接着证明△AEC为等边三角形得到EA=EC,得出④正确,加上DA=DC,则根据线段垂直平分线的判定方法可对②进行判断;然后根据平行线和等腰三角形的性质,则可对③进行判断;即可得出结论.【详解】解:在Rt△ABC中,∵∠ACB=30°,∴∠ABC=60°,∵△ABC≌△ADE,∴AB=AD,AC=AE,∴△ABD为等边三角形,∴∠BAD=∠ADB=60°,∵∠CAB=∠DAE=90°,∴∠EAC=∠BAD=60°,∵∠BAC=90°,∴∠DAC=30°=∠ACB,∴∠DAC=∠DCA,①正确;∵AC=AE,∠EAC=60°,∴△ACE为等边三角形,④正确;∴EA=EC,而DA=DC,∴ED为AC的垂直平分线,②正确;∴DE⊥AC,∵AB⊥AC,∴AB∥DE,∴∠ABE=∠BED,∵AB≠AE,∴∠ABE≠∠AEB,∴∠AEB≠∠BED,∴EB平分∠AED不正确,故③错误;故选:B.【点睛】本题是三角形的综合题,主要考查了全等三角形的性质、等边三角形的判定与性质、线段垂直平分线的判定与性质等,熟练掌握等边三角形的判定与性质是解题的关键.5、C【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.6、D【分析】连接,由三角形的中线将三角形面积分成相等的两部分,用m表示出△AEG的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接,设,则,∵为的中点,,∴故选:D.【点睛】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.7、A【分析】根据方程解的定义,将x与y的两对值代入方程得到关于m与n的方程组,解方程组即可.【详解】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.【点睛】本题考查了二元一次方程解的定义和二元一次方程组的解法,根据二元一次方程解的定义得到关于m、n的方程组是解题关键.8、A【分析】设共有学生x人,则书共(3x+8)本,再根据题意列出不等式,解出来即可.【详解】设共有学生x人,0≤(3x+8)-5(x-1)<3,解得5<x≤6.5,故共有学生6人,故选A.【点睛】此题主要考察不等式的应用.9、D【分析】根据完全平方公式、同底数幂的乘法除法法则、幂的乘方法则计算即可.【详解】A、,该选项错误;B、,该选项错误;C、,该选项错误;D、,该选项正确;故选:D.【点睛】本题考查了完全平方公式、同底数幂的乘法除法法则、幂的乘方法则,熟练掌握运算法则是解决本题的关键.10、D【分析】由作图过程可得DN是AB的垂直平分线,AD=BD=6,再根据直角三角形10度角所对直角边等于斜边一半即可求解.【详解】由作图过程可知:DN是AB的垂直平分线,∴AD=BD=6∵∠B=10°∴∠DAB=10°∴∠C=90°,∴∠CAB=60°∴∠CAD=10°∴CD=AD=1.故选:D.【点睛】本题考查了作图-基本作图、线段垂直平分线的性质、含10度角的直角三角形,解决本题的关键是掌握线段垂直平分线的性质.二、填空题(每小题3分,共24分)11、1【解析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=1cm.故答案是:1.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.12、相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13、1【分析】由角平分线上的点到角的两边距离相等性质解题.【详解】平分点到AB的距离等于CD长度2,所以故答案为:1.【点睛】本题考查角平分线的性质、三角形的面积公式等知识,是常见基础考点,掌握相关知识是解题关键.14、1【分析】根据题意把(m-n)看作一个整体并直接代入代数式进行计算即可得解.【详解】解:∵,∴,==(-1)1-(-1),=1+1,=1.故答案为:1.【点睛】本题考查代数式求值,熟练掌握整体思想的利用是解题的关键.15、-1【分析】根据积的乘方逆运算及平方差公式即可求解.【详解】∵x2-y2=-1,∴(x-y)2019(x+y)2019=[(x-y)(x+y)]2019=[x2-y2]2019=(-1)2019=-1【点睛】此题主要考查整式的运算,解题的关键是熟知积的乘方公式的逆运算得出与已知条件相关的式子.16、【分析】利用提取公因式a和完全平方公式进行因式分解.【详解】【点睛】本题考查了提公因式法与公式法的综合运用,正确应用完全平方公式是解题关键.17、>【解析】解:∵,,∴.故答案为>.18、1【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【详解】∵,,
∴.
故答案为:1.【点睛】本题主要考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.三、解答题(共66分)19、(1)D(1,0);(2)y=x−6;(3)(,0).【解析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,代入A、B坐标求出k,b的值即可;(3)作点B关于x轴的对称点B’,连接B’C交x轴于M,则点M即为所求,联立解析式可求出点C坐标,然后求出直线B’C的解析式,令y=0求出x的值即可.【详解】解:(1)由y=−3x+3,令y=0,得−3x+3=0,解得:x=1,∴D(1,0);(2)设直线l2的表达式为y=kx+b,由图象知:A(4,0),B(3,),代入表达式y=kx+b,得,解得:∴直线l2的解析表达式为y=x−6;(3)作点B关于x轴的对称点B’,则B’的坐标的为(3,),连接B’C交x轴于M,则点M即为所求,联立,解得:,∴C(2,-3),设直线B’C的解析式为:y=mx+n,代入B’(3,),C(2,-3),得,解得:,∴直线B’C的解析式为:y=x−12,令y=0,即x−12=0,解得:,∴的坐标为(,0).【点睛】此题主要考查了求一次函数图象的交点、待定系数法求一次函数解析式以及轴对称求最短路径问题,关键是掌握两函数图象相交,交点坐标就是两函数解析式组成的方程组的解.20、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.【分析】(2)可得(a−2)2+=2,由非负数的性质可得出答案;
(2)分两种情况:∠BAC=92°或∠ABC=92°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;
(3)①如图3,过点C作CL⊥y轴于点L,则CL=2=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证;
②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=2.【详解】(2)∵a2−4a+4+=2,
∴(a−2)2+=2,
∵(a-2)2≥2,≥2,
∴a-2=2,2b+2=2,
∴a=2,b=-2;
(2)由(2)知a=2,b=-2,
∴A(2,2),B(-2,2),
∴OA=2,OB=2,
∵△ABC是直角三角形,且∠ACB=45°,
∴只有∠BAC=92°或∠ABC=92°,
Ⅰ、当∠BAC=92°时,如图2,
∵∠ACB=∠ABC=45°,
∴AB=CB,
过点C作CG⊥OA于G,
∴∠CAG+∠ACG=92°,
∵∠BAO+∠CAG=92°,
∴∠BAO=∠ACG,
在△AOB和△BCP中,
,
∴△AOB≌△CGA(AAS),
∴CG=OA=2,AG=OB=2,
∴OG=OA-AG=2,
∴C(2,2),
Ⅱ、当∠ABC=92°时,如图2,
同Ⅰ的方法得,C(2,-2);
即:满足条件的点C(2,2)或(2,-2)
(3)①如图3,由(2)知点C(2,-2),
过点C作CL⊥y轴于点L,则CL=2=BO,
在△BOE和△CLE中,
,
∴△BOE≌△CLE(AAS),
∴BE=CE,
∵∠ABC=92°,
∴∠BAO+∠BEA=92°,
∵∠BOE=92°,
∴∠CBF+∠BEA=92°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(ASA),
∴BE=CF,
∴CF=BC;
②点C到DE的距离为2.
如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,
由①知BE=CF,
∵BE=BC,
∴CE=CF,
∵∠ACB=45°,∠BCF=92°,
∴∠ECD=∠DCF,
∵DC=DC,
∴△CDE≌△CDF(SAS),
∴∠BAE=∠CBF,
∴CK=CH=2.【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、,x=0,原式=1【分析】根据分式的计算法则先化简,然后将合适的x的整数值代入进行计算即可得解.【详解】原式===∵-2<x<2,x为整数且使原式有意义∴x=0将x=0代入得,原式==1.【点睛】本题主要考查了分式的化简求值,熟练掌握分式的加减混合运算方法是解决本题的关键.22、化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x2-2x+1)-(4x2-9)=4x2-8x+4-4x2+9=-8x+13当x=-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.23、证明见解析【分析】根据角平分线的性质“角平分线上的点到角的两边的距离相等”
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全管理干部教育培训
- 医药行业洞察指引
- 2024监理工程师考试考生指南试题及答案
- 2024人力资源管理师考试易错分析与试题及答案
- 投资咨询工程师发展规划试题及答案
- 黑龙江民族职业学院《工程光学及实验》2023-2024学年第二学期期末试卷
- 黑龙江省伊春市二中2025届高三下学期毕业班第三次模拟考试生物试题试卷含解析
- 黑龙江省克东县第一中学2025届高三3月调研考试数学试题含解析
- 黑龙江省哈尔滨市第三十二中学2025届高三英语试题二诊模拟试题含解析
- 黑龙江省大庆市肇源农场学校2025届五年级数学第二学期期末学业质量监测试题含答案
- 大学生创新创业训练计划项目申报书(模板)
- 争做最美班级主题班会课件
- 铁路职工政治理论应知应会题库
- 2020年交安A、B、C证(公路)考试题库1088题(含答案)
- 墙绘验收单模板
- 节后复工检查表
- 财务有哪些制度要上墙
- 医学教学课件:软组织肿瘤影像诊断
- 矿山矿石损失与贫化管理规程
- 安全生产晨会管理制度
- 直线导轨装配文档课件
评论
0/150
提交评论