2022-2023学年河北省廊坊市广阳区数学八上期末综合测试试题含解析_第1页
2022-2023学年河北省廊坊市广阳区数学八上期末综合测试试题含解析_第2页
2022-2023学年河北省廊坊市广阳区数学八上期末综合测试试题含解析_第3页
2022-2023学年河北省廊坊市广阳区数学八上期末综合测试试题含解析_第4页
2022-2023学年河北省廊坊市广阳区数学八上期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在四边形中,点是边上的动点,点是边上的定点,连接,分别是的中点,连接.点在由到运动过程中,线段的长度()A.保持不变 B.逐渐变小 C.先变大,再变小 D.逐渐变大2.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6) B.(﹣4,6) C.(﹣6,4) D.(﹣6,﹣4)3.如图,在△PAB中,∠A=∠B,D、E、F分别是边PA、PB、AB上的点,且AD=BF,BE=AF.若∠DFE=34°,则∠P的度数为()A.112° B.120° C.146° D.150°4.下列因式分解结果正确的有()①;②;③;④A.1个 B.2个 C.3个 D.4个5.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.46.如图,已知,点、、……在射线上,点、、…在射线上;、、……均为等边三角形,若,则的边长为.A.4028 B.4030 C. D.7.如图,已知△ABC的三条边和三个角,则甲、乙、丙三个三角形中和△ABC全等的是()A.甲和乙 B.甲和丙 C.乙和丙 D.只有乙8.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的()A.总体 B.个体 C.样本 D.样本容量9.如图,将一根长13厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为()厘米.A.1 B.2 C.3 D.410.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠1是对顶角,那么∠1=∠1.③三角形的一个外角大于任何一个内角.④如果x1>2,那么x>2.A.1个 B.1个 C.3个 D.4个11.如图,在中,,,,点到的距离是()A. B. C. D.12.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A.38 B.39 C.40 D.42二、填空题(每题4分,共24分)13.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.14.的平方根是_____.15.若分式的值是0,则x的值为________.16.分式的最简公分母为_____.17.若关于x的分式方程的解为正数,则满足条件的非负整数k的值为____.18.计算(10xy2﹣15x2y)÷5xy的结果是_____.三、解答题(共78分)19.(8分)先化简,再求值.(1﹣)÷的值,其中x=1.20.(8分)先化简,再求值:,其中a=1.21.(8分)如图,在中,,,点在线段上运动(不与、重合),连接,作,交线段于.(1)当时,=,=;点从向运动时,逐渐(填“增大”或“减小”);(2)当等于多少时,,请说明理由;(3)在点的运动过程中,的形状可以是等腰三角形吗?若可以,请直接写出的度数.若不可以,请说明理由.22.(10分)某校八年级全体同学参加了爱心捐款活动,该校随机抽查了部分同学捐款的情况统计如图:(1)求出本次抽查的学生人数,并将条形统计图补充完整;(2)捐款金额的众数是___________元,中位数是_____________;(3)请估计全校八年级1000名学生,捐款20元的有多少人?23.(10分)已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=1.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.24.(10分)如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BE=CF,求证:∠ACB=∠F.25.(12分)金堂赵镇某旅馆的客房有三人间和两人间两种,三人间每人每天40元,两人间每人每天50元.国庆节期间,一个48人的外地旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费2160元.求两种客房各租住了多少间?26.2019年8月,第18届世界警察和消防员运动会在成都举行.我们在体育馆随机调查了部分市民当天的观赛时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:(1)将条形统计图补充完整;(2)求抽查的市民观赛时间的众数、中位数;(3)求所有被调查市民的平均观赛时间.

参考答案一、选择题(每题4分,共48分)1、A【分析】连接AQ,则可知EF为△PAQ的中位线,可知EF=AQ,可知EF不变.【详解】如图,连接AQ,∵E、F分别为PA、PQ的中点,∴EF为△PAQ的中位线,∴EF=AQ,∵Q为定点,∴AQ的长不变,∴EF的长不变,故选:A.【点睛】本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.2、A【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【详解】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选A.【点睛】本题主要考查了点在第四象限时点的坐标的符号,点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.3、A【分析】根据等边对等角得到∠A=∠B,证得△ADF≌△BFE,得∠ADF=∠BFE,由三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,

∴∠A=∠B,

在△ADF和△BFE中,∴△ADF≌△BFE(SAS),

∴∠ADF=∠BFE,

∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,

∴∠A=∠DFE=34°,∴∠B=34°,

∴∠P=180°-∠A-∠B=112°,

故选:A.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.4、A【分析】根据提公因式法和公式法因式分解即可.【详解】①,故①错误;②,故②正确;③,故③错误;④,故④错误.综上:因式分解结果正确的有1个故选A.【点睛】此题考查的是因式分解,掌握提公因式法和公式法因式分解是解决此题的关键,需要注意的是因式分解要彻底.5、A【分析】根据第1~4组的频数求得第5组的频数,再根据即可得到结论.【详解】解:第5组的频数为:,∴第5组的频率为:,故选:A.【点睛】此题主要考查了频数与频率,正确掌握频率求法是解题关键.6、C【分析】根据等腰三角形的性质,等边三角形的性质以及三角形外角的性质得出A1B1=1A2B2=2,A3B3=4,A4B4=8……,可得AnBn=2n-1,即可求出的边长为..【详解】解:如图,∵是等边三角形,

∴∠B1A1O=60°,

∵∠MON=30°,

∴∠OB1A1=60°−30°=30°,

∴OA1=B1A1∵,

∴OA1=A1B1=1同理可得,A2B2=2,A3B3=4,A4B4=8,……

∴AnBn=2n-1,∴当n=2015时,A2015B2015=22014,故选C.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出规律是解题关键.7、B【分析】根据三角形全等的判定定理SSS、SAS、AAS、ASA、HL逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC对应相等,根据SAS可以判断甲三角形与△ABC全等;

乙三角形只有一条边及对角与△ABC对应相等,不满足全等判定条件,故乙三角形与△ABC不能判定全等;

丙三角形有两个角及夹边与△ABC对应相等,根据ASA可以判定丙三角形与△ABC全等;

所以与△ABC全等的有甲和丙,

故选:B.【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.8、C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,

故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.9、C【分析】首先应根据勾股定理求得圆柱形水杯的最大线段的长度,即=10,故筷子露在杯子外面的长度至少为多少可求出.【详解】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即=10(cm),∴筷子露在杯子外面的长度至少为13﹣10=3cm,故选C.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理的应用.10、A【解析】利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.【详解】A、两条平行线被第三条直线所截,内错角相等,故A错误,为假命题;B、如果∠1和∠1是对顶角,那么∠1=∠1,故B正确,为真命题;C、三角形的一个外角大于任何一个与它不相邻的内角,故C错误,为假命题;D、如x=-1时,x1>2,但是x<2,故D错误,为假命题,故选A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、三角形的外角的性质,属于基础知识,难度不大.11、A【分析】根据勾股定理求出AB,再根据三角形面积关系求CD.【详解】在中,,,,所以AB=因为AC∙BC=AB∙CD所以CD=故选A【点睛】考核知识点:勾股定理的运用.利用面积关系求斜边上的高是关键.12、B【解析】根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.【详解】解:由于共有6个数据,

所以中位数为第3、4个数的平均数,即中位数为=39,

故选:B.【点睛】本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.二、填空题(每题4分,共24分)13、25°或40°或10°【解析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.【详解】由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此时∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此时,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,综上所述,∠C度数可以为25°或40°或10°故答案为25°或40°或10°【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.14、±【解析】分析:首先计算,再求出2的平方根即可.详解:2的平方根是±,∴的平方根是±.故答案为±.点睛:此题主要考查了平方根,正确把握平方根的定义是解题关键.15、3【分析】根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.16、10xy2【解析】试题解析:分母分别是故最简公分母是故答案是:点睛:确定最简公分母的方法是:

(1)取各分母系数的最小公倍数;

(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;

(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.17、1.【分析】首先解分式方程,然后根据方程的解为正数,可得x>1,据此求出满足条件的非负整数K的值为多少即可.【详解】∵,∴.∵x>1,∴,∴,∴满足条件的非负整数的值为1、1,时,解得:x=2,符合题意;时,解得:x=1,不符合题意;∴满足条件的非负整数的值为1.故答案为:1.【点睛】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于1的值,不是原分式方程的解.18、2y﹣3x【分析】多项式除以单项式,多项式的每一项除以该单项式,然后运用同底数幂相除,底数不变,指数相减可得.【详解】解:(10xy2﹣15x2y)÷5xy=2y﹣3x.故答案为:2y﹣3x.【点睛】掌握整式的除法为本题的关键.三、解答题(共78分)19、.【解析】试题分析:先按分式的相关运算法则将原式化简,再代值计算即可.试题解析:原式==当x=1时,原式=.20、,.【分析】先将分式的除法转化为乘法,即可化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【详解】==,当a=1时,原式==.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、(1)40°,100°;减小;(2)当DC=2时,△ABD≌△DCE;理由见解析;(3)当∠ADB=110°或80°时,△ADE是等腰三角形.【分析】(1)利用平角的定义可求得∠EDC的度数,再根据三角形内角定理即可求得∠DEC的度数,利用三角形外角的性质可判断∠BDA的变化情况;(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,进而求出△ABD≌△DCE;(3)根据等腰三角形的判定以及分类讨论得出即可.【详解】(1)∵∠BDA=100°,∠ADE=40°,∠BDA+∠ADE+∠EDC=180°,∴∠EDC=180°-100°-40°=40°,∵∠EDC+∠DEC+∠C=180°,∠C=40°,∴∠DEC=180°-40°-40°=100°;∵∠BDA=∠C+∠DAC,∠C=40°,点D从B向C运动时,∠DAC逐渐减小,∴点D从B向C运动时,∠BDA逐渐减小,故答案为:40°,100°;减小;(2)当DC=2时,△ABD≌△DCE;理由:∵∠ADE=40°,∠B=40°,又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.∴∠BAD=∠EDC.在△ABD和△DCE中,,∴△ABD≌△DCE(ASA);(3)①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°-40°)=70°,∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;∴∠BDA=180°-30°-40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴∠BDA=180°-60°-40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.【点睛】此题主要考查了全等三角形的判定与性质和三角形内角和定理以及等腰三角形的性质等知识,根据已知得出△ABD≌△DCE是解题关键.22、(1)50人,条形图见详解;(2)10,12.5;(3)140人.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数,求出第25、26个数据的平均数可得数据的中位数;(3)由捐款20元的人数占总数的百分数,依据全校八年级1000名学生,即可得到结论.【详解】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50-9-14-7-4=16(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10元;中位数是(元),故答案为:10,12.5;(3)1000×=140(人),∴全校八年级1000名学生,捐款20元的大约有140人.【点睛】本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.23、(1)证明见解析(2)答案见解析(3)8【解析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM与NE交于K,则∠MKN=181°﹣2∠ONE=91°﹣∠NEA,即2∠ONE﹣∠NEA=91°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=1∴|a﹣b|+(b﹣4)2=1∵|a﹣b|≥1,(b﹣4)2≥1∴|a﹣b|=1,(b﹣4)2=1∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△BAH中,∴△AOE≌△BAH(ASA)∴AH=OE在△ONE和△AMH中,∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=181°﹣2∠ONE=91°﹣∠NEA∴2∠ONE﹣∠NEA=91°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论