




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点M(-1,3)关于x轴对称的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列运算正确的是:()A. B. C. D.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=40°,则∠CDE的度数为()A.50° B.40° C.60° D.80°4.下列命题中的真命题是()A.锐角大于它的余角 B.锐角大于它的补角C.钝角大于它的补角 D.锐角与钝角之和等于平角5.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE的长是()A.1 B.2 C.3 D.46.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN(
)A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN7.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E、F为AB上的一点,CF⊥AD于H,下列判断正确的有()A.AD是△ABE的角平分线 B.BE是△ABD边AD上的中线C.AH为△ABC的角平分线 D.CH为△ACD边AD上的高8.下列二次根式中是最简二次根式的为()A. B. C. D.9.如图,在中,,是的中点,是上任意一点,连接、并延长分别交、于点、,则图中的全等三角形共有()A.对 B.对 C.对 D.对10.下列各组数中,以它们为边的三角形不是直角三角形的是()A.3,4,5 B.5,12,13 C.7,24,25 D.5,7,911.方格纸上有、两点,若以点为原点建立直角坐标系,则点坐标为,若以点为原点建立直角坐标系,则点坐标是()A. B. C. D.12.如图,在中,,,求证:.当用反证法证明时,第一步应假设()A. B. C. D.二、填空题(每题4分,共24分)13.对于任意不相等的两个实数a,b(a>b)定义一种新运算a※b=,如3※2=,那么12※4=______14.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是__________.15.若,,且,则__________.16.如图,中,,以为边在的外侧作两个等边和,,则的度数为________.17.自然数4的平方根是______18.已知点P(a,b)在一次函数y=2x﹣1的图象上,则4a﹣2b+1=_____.三、解答题(共78分)19.(8分)如图,△ABC的顶点坐标分别为A(2,3),B(1,1),C(3,2).(1)将△ABC向下平移4个单位长度,画出平移后的△ABC;(2)画出△ABC关于y轴对称的△ABC.并写出点A,B,C的坐标.20.(8分)如图,在△ABC中,∠ACB=90°,∠ABC和∠CAB的平分线交于点O,求∠AOB的度数.21.(8分)(1)解方程:.(2)先化简:,再任选一个你喜欢的数代入求值.22.(10分)如图,已知∠ABC=∠ADC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°,求∠CED的度数.23.(10分)已知3a+b的立方根是2,b是的整数部分,求a+b的算术平方根.24.(10分)如图,分别以△ABC的边AB,AC向外作两个等边三角形△ABD,△ACE.连接BE、CD交点F,连接AF.(1)求证:△ACD≌△AEB;(2)求证:AF+BF+CF=CD.25.(12分)如图,在平面直角坐标系中,直线分别交轴、轴于点点,,且满足,点在直线的左侧,且.(1)求的值;(2)若点在轴上,求点的坐标;(3)若为直角三角形,求点的坐标.26.某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,同时在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,则超出5件的部分可按原价的六折进行优惠;设需要租用()件服装,选择甲店则需要元,选择乙店则需要元,请分别求出,关于的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?
参考答案一、选择题(每题4分,共48分)1、C【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点的坐标,再根据点的坐标确定所在象限.【详解】点M(-1,3)关于x轴对称的点坐标为(-1,-3),在第三象限,故选C.【点睛】本题考查的是关于x轴、y轴对称的点的坐标,熟练掌握关于x轴对称点的坐标特点是解题的关键.2、D【分析】根据幂的运算法则和完全平方公式逐项计算可得出正确选项.【详解】解:A.,故错误;B.,故错误;C.,故错误;D.,正确.故选:D【点睛】本题考查了幂的运算和完全平方公式,熟练掌握幂的运算法则是解题关键.3、C【分析】根据等腰三角形的性质推出∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=20°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【详解】∵AC=CD=BD=BE,∠A=40°,∴∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=40°,∴∠B=20°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣20°)=80°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣40°﹣80°=60°,故选:C.【点睛】此题考查等腰三角形的性质:等边对等角.4、C【详解】A、锐角大于它的余角,不一定成立,故本选项错误;B、锐角小于它的补角,故本选项错误;C、钝角大于它的补角,本选项正确;D、锐角与钝角之和等于平角,不一定成立,故本选项错误.故选C.5、B【分析】根据条件可以得出∠E=∠ADC=90,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【详解】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90,∴∠EBC+∠BCE=90.∵∠BCE+∠ACD=90,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=1.∴DE=EC−CD=1−1=2故选B.【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.6、D【分析】A、在△ABM和△CDN中由ASA条件可证△ABM≌△CDN,则A正确,B、在△ABM和△CDN中由SAS可证△ABM≌△CDN则B正确,C、AM∥CN,得∠A=∠C,在△ABM和△CDN中AAS△ABM≌△CDN,则C正确,D、只有在直角三角形中边边角才成立,则D不正确.【详解】A、在△ABM和△CDN中,∠M=∠N,MB=ND,∠MBA=∠NDC,△ABM≌△CDN(ASA),则A正确;B、在△ABM和△CDN中,MB=ND,∠MBA=∠NDC,AB=CD,△ABM≌△CDN(SAS),则B正确;C、AM∥CN,得∠A=∠C,在△ABM和△CDN中,∠A=∠C,∠MBA=∠NDC,MB=ND,△ABM≌△CDN(AAS),则C正确;D、AM=CN,MB=ND,∠MBA=∠NDC≠90º,则D不正确.故选择:D.【点睛】本题考查在一边与一角的条件下,添加条件问题,关键是掌握三角形全等的判定方法,结合已知与添加的条件是否符合判定定理.7、D【解析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【详解】A.根据三角形的角平分线的概念,知AG是△ABE的角平分线,故本选项错误;B.根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故本选项错误;C.根据三角形的角平分线的概念,知AD是△ABC的角平分线,故本选项错误;D.根据三角形的高的概念,知CH为△ACD的边AD上的高,故本选项正确;故选D.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握其定义.8、B【分析】利用最简二次根式定义判断即可.【详解】解:A、,故不是最简二次根式,本选项错误;B、是最简二次根式,本选项正确;C、,故不是最简二次根式,本选项错误;D.,故不是最简二次根式,本选项错误.故选:B.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.9、A【分析】根据等腰三角形的性质,全等三角形的判断及性质可知有以下7对三角形全等:△ABD≌△ACD、△ABP≌△ACP、△ABE≌△ACF、△APF≌△APE、△PBD≌△PCD、△BPF≌△CPE、△BCF≌△CBE.【详解】①∵,是的中点,由等腰三角形三线合一可知:,,∴②由,,,∴③由②可知,,∵,,,∴④由③可知,,∵,,∴⑤由①可知,,,又∵,∴⑥由③⑤可知,,,∴,又∵,⑦由⑤可知,由⑥可知,又∵∴∴共7对全等三角形,故选A.【点睛】本题主要考查等腰三角形的性质,全等三角形的性质及判定,熟练掌握全等三角形的判定定理()是解题的关键.10、D【分析】欲判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方.【详解】A、,能构成直角三角形,不符合题意;
B、,能构成直角三角形,不符合题意;
C、,能构成直角三角形,不符合题意;
D、,不能构成直角三角形,符合题意.
故选:D.【点睛】本题主要考查了勾股定理的逆定理:已知△ABC的三边满足,则△ABC是直角三角形.11、C【分析】明确A、B的坐标位置,即可判定坐标.【详解】以B为原点建立平面直角坐标系,则A点的坐标为(3,4);若以A点为原点建立平面直角坐标系,则B点在A点左3个单位,下4个单位处.故B点坐标为(-3,-4).故答案为C.【点睛】此题主要考查平面直角坐标系中用坐标表示位置,熟练掌握其性质,即可解题.12、B【分析】根据反证法的概念,即可得到答案.【详解】用反证法证明时,第一步应假设命题的结论不成立,即:.故选B.【点睛】本题主要考查反证法,掌握用反证法证明时,第一步应假设命题的结论不成立,是解题的关键.二、填空题(每题4分,共24分)13、【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4=故答案为:【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.14、【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=,即BE取最小值为,∴BM+MN的最小值是.【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.15、1【分析】根据=3m+9n求出m-n=3,再根据完全平方公式即可求解.【详解】∵=3m+9n=3(m+3n)又∴m-n=3∴(m-n)2+2mn=9+10=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是因式分解的方法及完全平方公式的应用.16、20°.【分析】首先利用等边三角形的性质以及等腰三角形的性质得出各个角的度数,进而利用四边形内角和定理求出2∠ABC的度数,最后再计算出∠BAC的度数即可.【详解】∵,以为边在的外侧作两个等边和,∴,,,,,,∴∠BAC=180°-160°=20°.故答案为:20°.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质和四边形内角和定理等知识,根据已知得出是解暑关键.17、±1【分析】直接利用平方根的定义分析得出答案.【详解】解:自然数4的平方根是±1.
故答案为:±1.【点睛】此题主要考查了平方根,正确把握平方根的定义是解题关键.18、1【分析】直接把点P(a,b)代入一次函数y=2x﹣1,可求b=2a﹣1,即可求4a﹣2b+1=1.【详解】解:∵点P(a,b)在一次函数y=2x﹣1的图象上,∴b=2a﹣1∴4a﹣2b+1=4a﹣2(2a﹣1)+1=1故答案为1【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.三、解答题(共78分)19、(1)见解析;(2)作图见解析,【分析】根据三角形在坐标中的位置,将每个点分别平移,即可画出平移后的图象.【详解】解:(1)、(2)如图:∴点A,B,C的坐标分别为:,,.【点睛】本题考查了平移,轴对称的知识,解题的关键是熟练掌握作图的方法.20、135°【解析】根据三角形的内角和定理求出∠ABC+∠BAC,再根据角平分线的定义求出∠OAB+∠OBA,然后利用三角形的内角和定理列式计算即可得解.【详解】∵∠C=90°,∴∠ABC+∠BAC=180°﹣90°=90°.∵∠CAB与∠CBA的平分线相交于O点,∴∠OAB+∠OBA=12(∠ABC+∠BAC)=12×90°=在△AOB中,∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣45°=135°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.21、(1)x=2;(2)原式=,当x=5时,原式=【分析】(1)先把分式方程去分母化简成整式方程,再解方程得到x的值,经检验即可得到分式方程的解.(2)先根据分式混合运算法则把原式进行化简,即先去括号,在计算乘除法进行约分,再任选一个合适的数代入求值即可.【详解】解:(1)方程两边同乘以(x+1)(x-1),则:2(x+1)+(x-1)=7解得:x=2检验:把x=2代入(x+1)(x-1)=3≠0∴原方程的解为:x=2(2)原式=÷=×=∴当x=5时,原式=【点睛】本题是计算题,主要考查解分式方程的知识和分式的化简求值,关键是掌握把分式方程化简成最简分式或整式方程、把分式化简成最简分式或整式的方法.22、(1)详见解析;(2)135°【分析】(1)根据平行线的性质求出∠DAE=∠BEA,由AE平分∠BAD得∠BAE=∠DAE,从而得出结论.(2)由根据∠ADE=3∠CDE设∠CDE=x°,∠ADE=3x°,∠ADC=2x°,根据平行线的性质得出方程,求出x即可.【详解】(1)证明:∵AB∥CD,∴∠B+∠C=180°.∵∠B=∠D,∴∠C+∠D=180º∴AD∥BC.∴∠DAE=∠BEA.∵AE平分∠BAD,∴∠DAE=∠BAE.∴∠BAE=∠BEA.(2)解:∵∠ADE=3∠CDE,设∠CDE=x,∴∠ADE=3x,∠ADC=2x.∵AB∥CD,∴∠BAD+∠ADC=180º∴由(1)可知:,∵AD∥BC∴∠BED+∠ADE=180°∴∵∠AED=60°,即,∴∠CDE=x=15°,∠ADE=45°.∵AD∥BC.∴.【点睛】本题考查了平行线的判定与性质、三角形内角和定理、三角形的外角性质,掌握平行线的判定与性质、三角形内角和定理、三角形的外角性质是解题的关键.23、1.【分析】首先根据立方根的概念可得3a+b的值,接着估计的大小,可得b的值;进而可得a、b的值,进而可得a+b;最后根据平方根的求法可得答案.【详解】解:根据题意,可得3a+b=8;又∵1<<3,
∴b=1,∴3a+1=8;
解得:a=1
∴a+b=1+1=4,
∴a+b的算术平方根为1.故答案为:1.【点睛】此题主要考查了立方根、算术平方根的定义及无理数的估算能力,掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24、(1)证明见解析;(2)证明见解析.【分析】(1)根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAB=60,根据全等三角形的判定定理即可得到结论;(2)如图,延长FB至K,使FK=DF,连DK,根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论.【详解】(1)∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAB=60°,∴∠DAC=∠BAE=60°+∠BAC.在△ACD和△AEB中,∵,∴△ACD≌△AEB(SAS);(2)由(1)知∠CDA=∠EBA,如图∠1=∠2,∴180°﹣∠CDA﹣∠1=180°﹣∠EBA﹣∠2,∴∠DAB=∠DFB=60°,如图,延长FB至K,使FK=DF,连DK,∴△DFK为等边三角形,∴DK=DF,∴△DBK≌△DAF(SAS),∴BK=AF,∴DF=DK,FK=BK+BF,∴DF=AF+BF,又∵CD=DF+CF,∴CD=AF+BF+CF.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.25、(1)a=2,b=1;(2)P(1,0);(3)P(﹣1,2)或(﹣2,﹣2).【分析】(1)将利用完全平方公式变形得到(a-2)2+|2a-b|=0,即可求出a、b的值;(2)由b的值得到OB=1,根据得到OP=OB=1,即可得到点P的坐标;(3)由可分两种情况求使为直角三角形,当∠ABP=90°时,当∠BAP=90°时,利用等腰三角形的性质证明三角形全等,由此得到点P的坐标.【详解】(1)∵a2-1a+1+|2a-b|=0,∴(a-2)2+|2a-b|=0,∴a=2,b=1.(2)由(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 挂牌合作办学协议书7篇
- 黄芩收购合同8篇
- 上海中考滑轮试题及答案
- 厦门市城市房屋拆迁补偿安置协议书范本6篇
- 2025专利申请代理合同3篇
- 房产继承协议书6篇
- 测量呼吸护理
- 台站测风仪项目绩效评估报告
- 2025西安翻译学院辅导员考试试题及答案
- 2025贵州电子信息职业技术学院辅导员考试试题及答案
- SL+290-2009水利水电工程建设征地移民安置规划设计规范
- 2024年江苏中考地理试卷(带有答案)
- 江苏省江阴市普通高中2023-2024学年物理高一第二学期期末统考试题含解析
- 唐诗宋词人文解读智慧树知到期末考试答案章节答案2024年上海交通大学
- 小学四年级奥数-还原问题
- 江苏省2024年中职职教高考文化统考财会专业综合理论试卷
- 《电力安全工器具预防性试验规程》
- GB/T 43731-2024生物样本库中生物样本处理方法的确认和验证通用要求
- 建筑装饰装修工程消耗量定额
- 排水工程毕业设计哈工大
- 北京市2023年中考备考语文专题复习 名著阅读题(解析)
评论
0/150
提交评论