专题05 三角形(学生版)-2024年新高一(初升高)数学暑期衔接讲义_第1页
专题05 三角形(学生版)-2024年新高一(初升高)数学暑期衔接讲义_第2页
专题05 三角形(学生版)-2024年新高一(初升高)数学暑期衔接讲义_第3页
专题05 三角形(学生版)-2024年新高一(初升高)数学暑期衔接讲义_第4页
专题05 三角形(学生版)-2024年新高一(初升高)数学暑期衔接讲义_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题05三角形【知识点梳理】知识点1:三角形的“四心”三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.如图3.2-1,在三角形中,有三条边,三个角,三个顶点,在三角形中,角平分线、中线、高(如图3.2-2)是三角形中的三种重要线段.三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.三角形的三条角平分线相交于一点,是三角形的内心.三角形的内心在三角形的内部,它到三角形的三边的距离相等.三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.过不共线的三点A、B、C有且只有一个圆,该圆是三角形ABC的外接圆,圆心O为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.知识点2:几种特殊的三角形结论一:等腰三角形底边上三线(角平分线、中线、高线)合一.因而在等腰三角形ABC中,三角形的内心I、重心G、垂心H必然在一条直线上.结论二:正三角形三条边长相等,三个角相等,且四心(内心、重心、垂心、外心)合一,该点称为正三角形的中心.【题型归纳目录】题型一:三角形的“四心”题型二:几种特殊的三角形【典例例题】题型一:三角形的“四心”例1.(2023·浙江杭州·统考二模)如图,在平行四边形中,P是线段中点,连接交于点E,连接.

(1)如果.①求证:平行四边形为菱形;②若,求线段的长.(2)分别以为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线上,如果,求的值.例2.(2023·湖北省直辖县级单位·校考模拟预测)如图,在中,为对角线,,是的中线.

(1)在图1中用无刻度的直尺画出的高;(2)在图2中用无刻度的直尺画出的高例3.(2023·四川成都·统考二模)在,,,点O是边的中点,将绕点O旋转得到(点A,B的对应点分别为,),点不在直线上,连接.

(1)如图1,连接,,,求证:四边形是矩形;(2)如图2,当落在边上时,与交于点M,连接,.求线段的长;(3)在旋转过程中,点G为的重心,连接,当线段取得最小值时,求出此时的面积.变式1.(2023·湖北十堰·统考三模)如图,已知,四边形中,,的平分线交于点,以为直径作半经过点,交于点.

(1)求证:与半相切;(2)若,求的长.变式2.(2023·安徽滁州·统考二模)如图1,是的角平分线,点是的中点,过点作的平行线交的延长线于点,交于点,在射线上取一点,使.

(1)求证:;(2)如图2,已知,.①求的长;②图中存在四个点,以它们为顶点能构成一个平行四边形,在图中画出这个平行四边形,并证明它是平行四边形.变式3.(2023·浙江金华·统考二模)如图,,点E是延长线上一点,.

(1)求证:.(2)若平分,,求的度数.变式4.(2023·黑龙江哈尔滨·统考模拟预测)如图,在矩形中,对角线和相交于点O,点分别为、的中点.

(1)求证:;(2)如图2,连接和,在不添加任何辅助线的情况下,请直接写出图中面积是面积3倍的三角形.变式5.(2023·吉林长春·吉林大学附属中学校考三模)[问题提出]某节数学课上,小致遇到这样一个问题:如图①,在中,均为的中线,与相交于点O.求的值.(此处无需求解)

[方法探究](1)小致发现,过点A作的平行线交的延长线于点F(如图②),可以得到,.则的值为______.[方法应用]参考小致思考问题的方法,解决问题:如图③,在中,为边上的中线,点D在的延长线上,且.(2)求的值.(3)若的面积为10,则四边形的面积为______.变式6.(2023·福建泉州·统考模拟预测)如图,在中,点是中点,点是射线上的一点.连接并延长交于点.

(1)若,则_________;(2)求证:.变式7.(2023·安徽合肥·统考二模)如图,在平面直角坐标系中,已知三个顶点的坐标分别是.

(1)请画出向左平移6个单位长度后得到的;(2)以点O为位似中心,将缩小为原来的,得到,请在y轴右侧画出,并求出的面积.变式8.(2023·陕西西安·校考模拟预测)如图,在平面直角坐标系中,网格上的每个小正方形的边长均为1,的顶点坐标分别为,,.

(1)在图中画出关于x轴对称的(点A、B、C的对应点分别为、、);(2)求的面积.变式9.(2023·陕西西安·西安市第二十六中学校考模拟预测)【问题提出】

(1)如图1,在中,,,为边上的高,则的长为______.(2)如图2,在四边形中,,且,E,F分别是的中点,连接与相交于点M,与相交于点O,若,求的长.【问题解决】(3)如图3,四边形是园林局欲修建的一块菱形园地的大致示意图,沿对角线各修一条人行走道,.E是上的一点,点F,G在上,,.根据规划要求,建造一个四边形OEFG的特殊花卉种植区,求该种植区四边形OEFG的最大面积.题型二:几种特殊的三角形例4.(2023·全国·模拟预测)如图,在中,,是的中点,点,在直线上,且.(1)求证:四边形是菱形;(2)若,,求的长.例5.(2023·江苏淮安·校联考三模)如图,,,点D在边上,,和相交于点O.(1)求证:;(2)若,则的度数为______.例6.(2023·湖北咸宁·统考一模)【问题探究】如图1,正方形中,点、分别在边、上,且于点P,求证;【知识迁移】如图2,矩形中,,点E、F、G、H分别在边上,且于点P.求的值;【拓展应用】如图3,在四边形中,点E、F分别在线段上,且于点P.请直接写出的值.

变式10.(2023·云南楚雄·统考二模)如图,与相交于点O,且,.求证:.

变式11.(2023·福建福州·统考二模)如图,点A,B在的同侧,线段相交于点E,,,求证:.

变式12.(2023·广东揭阳·校联考二模)如图,中,,平分.

(1)过点A作的垂线,H为垂足,交于点P;(要求:尺规作图,保留作图痕迹,不写作法)(2)求证:.变式13.(2023·黑龙江哈尔滨·九年级哈尔滨德强学校校考开学考试)如图,方格纸中,每个小正方形的边长都是1,在平面直角坐标系中的位置如图所示.

(1)画出关于y轴对称的.(2)画出以为腰的等腰三角形,连接,,使的面积为5.变式14.(2023·江苏南京·模拟预测)如图,在中,对角线交于点O,E是延长线上的点,且是等边三角形.(1)求证:四边形是菱形.(2)若,求证:四边形是正方形.变式15.(2023·安徽合肥·合肥市第四十五中学校考三模)如图1,已知为等边三角形,,分别在,上,且,连接,过点作交于点,连接.

(1)若点和A点重合,则______;(2)若,如图2,求证:四边形为平行四边形;(3)猜想线段,,之间的数量关系,并利用图1给出证明.变式16.(2023·山东德州·统考二模)【综合与实践】数学综合实践课上,同学们以“等腰三角形的旋转”为主题,开展如下探究活动:(1)【操作探究】如图1,为等边三角形,将绕点A旋转,得到,连接,则______.若F是的中点,连接,则与的数量关系是______.

(2)【迁移探究】如图2,将(1)中的绕点A逆时针旋转,得到,其他条件不变,求出此时的度数及与的数量关系.

(3)【拓展应用】如图3,在中,,将绕点A旋转,得到,连接,F是的中点,连接.在旋转过程中,当时,直接写出线段的长.

【过关测试】一、解答题1.(2023·广东深圳·深圳市高级中学校联考模拟预测)问题背景:(1)如图1,点是内一点,且,连接,,求证:.

(2)如图2,点是线段垂直平分线上位于上方的一动点,是位于上方的等腰直角三角形,且,则,

①______1(填一个合适的不等号);②的最大值为______,此时______°.问题组合与迁移:(3)如图3,是等腰底边上的高,点是上的一动点,位于的上方,且,若,求的最小值.

2.(2023·广东深圳·九年级校联考阶段练习)如图1,在等腰直角三角形中,,,点、分别在边、上,,连接,点、、分别为、、的中点.

(1)观察猜想:图1中,线段与的数量关系是__________,的大小是__________;(2)探究证明:把绕点顺时针方向旋转到图2的位置,连接、、,判断的形状,试说明理由;(3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值.3.(2023·山东淄博·统考二模)如图,在中,,将平移4个单位长度得到,点,分别是,的中点,求的最大值和最小值.

4.(2023·山东济南·三模)已知在平面直角坐标系中的位置如图所示,,线段交y轴于点,且D是中点,反比例函数经过线段的中点E.

(1)求反比例函数的解析式;(2)如图2,点G是x轴上一点,连接交反比例函数的图象于点F,连接,交于点P.若,求的面积.(3)点M是直线右侧反比例函数图象上一点,连接,过点M作交x轴于点N,连接,当与相似时,求点M的坐标.5.(2023·云南昆明·统考二模)【问题引入】古希腊几何学家海伦和我国南宋数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦-秦九韶公式,如果一个三角形的三边长分别是,记,那么三角形的面积为:,在中,,,所对的边长分别为,若,,,则的面积为6;【问题探索】如图一,在中,设,,,,是的内切圆,分别与的延长线、的延长线以及线段均只有一个公共点,的半径为,的半径为.

(1)分析与证明:如图二,连接,则被划分为三个小三角形,用表示的面积,即.那么是否成立?请证明你的结论.(2)理解与应用:当,,时,求的面积.6.(2023·云南昆明·校考三模)【感知】如图1,已知四边形中,.求证:A、B、C、D四点在同一个圆上.聪明的李明同学在小卡片上给出了正确的解法:证明:连接,取的中点O,连结、,∵,O是的中点,∴,,∴,即A、B、C、D四点在以O为圆心的同一个圆上.【拓展】如图,在正方形中,,点F是中点,点E是边上一点,于点P.(注:下述证明过程中可直接使用李明的结论)(1)如图2,当点P在线段上时,证明:;(2)如图3,过点P分别作、的垂线,垂足分别为N、M.求的最小值.7.(2023·吉林长春·校联考一模)问题原型:如图(1)所示,在等腰直角三角形中,,,的中点为,将线段绕点按顺时针方向旋转得到线段,连接,过点作边上的高,易证,从而得到的面积为.初步探究:如图(2)所示,在中,,,的中点为.将线段绕点按顺时针方向旋转得到线段,连接.用含的代数式表示的面积,并说明理由.简单应用:如图(3)所示,在等腰三角形中,,,的中点为将线段绕点按顺时针方向旋转得到线段,连接,直接写出的面积(用含的代数式表示).8.(2023·浙江温州·校联考二模)如图在的方格纸中,点均在格点上,请按要求画出相应格点图形.

(1)在图1中画出关于点成中心对称的格点三角形(点的对应点分别为).(2)在图2中画出,使得.9.(2023·吉林延边·统考一模)【探究】(1)如图①,在中,,点是中点,连接,则与的数量关系是______.

【应用】(2)如图②,在中,,,点,分别是、的中点,连接、,且,,求的长度.

(3)如图③,的中线、相交于点,、分别是、的中点.连接、、、.若的面积为,则四边形的面积为______.

10.(2023·黑龙江哈尔滨·统考二模)已知四边形中,,相交于点E,,.(1)如图,求证:;

(2)如图2,延长,延长相交于点F,若点D是的中点.在不添加任何辅助线的情况下,请直接写出图2中的四个三角形,使写出的每个三角形的面积都等于面积的2倍.

11.(2023·江西南昌·校考一模)在平面直角坐标系中的位置如图所示,点的坐标为.

(1)在图中作出关于轴对称的图形,并写出,,的坐标;(2)求出的面积.12.(2023·安徽合肥·校考一模)如图,在平面直角坐标系中,已知的三个顶点的坐标分别是、、

(1)以点为旋转中心,将逆时针旋转,得到,请画出(点、、的对应点分别为、、);(2)将平移,使平移后点B、对应点、分别在轴和轴上,画出平移后的;(3)借助网格,请用无刻度的直尺画出的中线(保留作图辅助线)13.(2023·山东济南·统考三模)如图,在中,以AB为直径的与BC相交于点D,过点D作的切线交于点E..

(1)求证:;(2)若的直径为13,,求的长.14.(2023·江苏无锡·校联考三模)如图①,在矩形中,,,点从点出发,沿折线以每秒个单位长度的速度向点运动,同时点从点出发,沿以每秒个单位长度的速度向点运动,点到达点时,点、同时停止运动.当点不与点、重合时,作点关于直线的对称点,连接交于点,连接、,设点的运动时间为秒.

(1)当点在上时,用含的代数式表示;当点在上时,用含的代数式表示;(2)当为直角三角形时,求的值.(3)如图②,取的中点,连接.当在上,且时,求的值.当点在上运动时,是否存在的情况,如果存在直接写出的值,如果不存在请说明理由.15.(2023·福建厦门·厦门一中校考模拟预测)如图,在中,,,将线段绕点逆时针旋转角得到线段,连接,过点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论