版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市萧山区厢片五校2025届九上数学期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AD=AC,延长CD至B,使BD=CD,DE⊥BC交AB于点E,EC交AD于点F.下列四个结论:①EB=EC;②BC=2AD;③△ABC∽△FCD;④若AC=6,则DF=1.其中正确的个数有()A.1 B.2 C.1 D.42.下列事件是随机事件的是()A.打开电视,正在播放新闻 B.氢气在氧气中燃烧生成水C.离离原上草,一岁一枯荣 D.钝角三角形的内角和大于180°3.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是()A. B. C. D.4.如图工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间线段最短 B.两点确定一条直线C.三角形具有稳定性 D.长方形的四个角都是直角5.如图,点是内一点,,,点、、、分别是、、、的中点,则四边形的周长是()A.24 B.21 C.18 D.146.若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是()A.﹣14 B.﹣17 C.﹣20 D.﹣237.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到颜色相同的球的概率为()A. B. C. D.8.如图,⊙O是△ABC的外接圆,连接OC、OB,∠BOC=100°,则∠A的度数为()A.30° B.40° C.50° D.60°9.下列四组、、的线段中,不能组成直角三角形的是()A.,, B.,,C.,, D.,,10.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.《算学宝鉴》中记载了我国数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为_________.12.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是__________.13.已知⊙的半径为4,⊙的半径为R,若⊙与⊙相切,且,则R的值为________.14.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.15.在平面坐标系中,正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,正方形的面积为______,延长交轴于点,作正方形,……按这样的规律进行下去,正方形的面积为______.16.一男生推铅球,铅球行进高度y与水平距离x之间的关系是,则铅球推出的距离是_____.此时铅球行进高度是_____.17.某一时刻,一棵树高15m,影长为18m.此时,高为50m的旗杆的影长为_____m.18.已知反比例函数的图象如图所示,则_____
,在图象的每一支上,随的增大而_____.三、解答题(共66分)19.(10分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.(1)方程x2-8x+3=0的中点值是________;(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.20.(6分)已知,如图,在△ABC中,∠C=90°,点D是AB外一点,过点D分别作边AB、BC的垂线,垂足分别为点E、F,DF与AB交于点H,延长DE交BC于点G.求证:△DFG∽△BCA21.(6分)已知方程是关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个根之和等于两根之积,求的值.22.(8分)用适当的方法解下列方程:(1)(2)23.(8分)在平面直角坐标系xOy中,已知抛物线G:y=ax2﹣2ax+4(a≠0).(1)当a=1时,①抛物线G的对称轴为x=;②若在抛物线G上有两点(2,y1),(m,y2),且y2>y1,则m的取值范围是;(2)抛物线G的对称轴与x轴交于点M,点M与点A关于y轴对称,将点M向右平移3个单位得到点B,若抛物线G与线段AB恰有一个公共点,结合图象,求a的取值范围.24.(8分)甲、乙、丙、丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)求第一次甲将花传给丁的概率;(2)求经过两次传花,花恰好回到甲手中的概率.25.(10分)如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连接AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若∠AFB=2,求的值.(3)若点G在线段BF上,且GF=2BG,连接AG,CG,设=x,四边形AGCE的面积为,ABG的面积为,求的最大值.26.(10分)综合与探究如图,抛物线经过点A(-2,0),B(4,0)两点,与轴交于点C,点D是抛物线上一个动点,设点D的横坐标为.连接AC,BC,DB,DC,(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求的值;(3)在(2)的条件下,若点M是轴上的一个动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据垂直平分线的性质可证①;②是错误的;推导出2组角相等可证△ABC∽△FCD,从而判断③;根据△ABC∽△FCD可推导出④.【详解】∵BD=CD,DE⊥BC∴ED是BC的垂直平分线∴EB=EC,△EBC是等腰三角形,①正确∴∠B=∠FCD∵AD=AC∴∠ACB=∠FDC∴△ABC∽△FCD,③正确∴∵AC=6,∴DF=1,④正确②是错误的故选:C【点睛】本题考查等腰三角形的性质和相似的证明求解,解题关键是推导出三角形EBC是等腰三角形.2、A【分析】根据随机事件的意义,事件发生的可能性大小判断即可.【详解】解:A、打开电视,正在播放新闻,是随机事件;B、氢气在氧气中燃烧生成水,是必然事件;C、离离原上草,一岁一枯荣,是必然事件;D、钝角三角形的内角和大于180°,是不可能事件;故选:A.【点睛】本题考查可随机事件的意义,正确理解随机事件的意义是解决本题的关键.3、D【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.【详解】A.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;B.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;C.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,故选:D.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.4、C【分析】根据三角形的稳定性,可直接选择.【详解】加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.
故选:C.5、B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半,求出,然后代入数据进行计算即可得解.【详解】∵E、F、G、H分别是AB、AC、CD、BD的中点,
∴,∴四边形EFGH的周长,
又∵AD=11,BC=10,
∴四边形EFGH的周长=11+10=1.
故选:B.【点睛】本题考查了三角形的中位线定理,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.6、A【解析】根据不等式组求出a的范围,然后再根据分式方程求出a的范围,从而确定a满足条件的所有整数值,求和即可.【详解】不等式组整理得:,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,分式方程去分母得:12﹣ax=2x+4,解得:x=,∵分式方程有整数解且a是整数∴a+2=±1、±2、±4、±8,即a=﹣1、﹣3、0、﹣4、2、﹣6、6、﹣10,又∵x=≠﹣2,∴a≠﹣6,由a<﹣3得:a=﹣10或﹣4,∴所有满足条件的a的和是﹣14,故选:A.【点睛】本题主要考查含参数的分式方程和一元一次不等式组的综合,熟练掌握分式方程和一元一次不等式组的解法,是解题的关键,特别注意,要检验分式方程的增根.7、C【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可【详解】解:两次摸球的所有的可能性树状图如下:
共有4种等可能的结果,其中两次都摸到颜色相同的球结果共有2种,
∴两次都摸到颜色相同的球的概率为.
故选C.【点睛】本题考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.8、C【分析】直接根据圆周角定理即可得出结论.【详解】∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC==50°.故选:C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.9、B【分析】根据勾股定理的逆定理判断三角形三边是否构成直角三角形,依次计算判断得出结论.【详解】A.∵,,∴,A选项不符合题意.B.∵,,∴,B选项符合题意.C.∵,,∴,C选项不符合题意.D.∵,∴,D选项不符合题意.故选:B.【点睛】本题考查三角形三边能否构成直角三角形,熟练逆用勾股定理是解题关键.10、B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点:1.轴对称图形;2.中心对称图形.二、填空题(每小题3分,共24分)11、x(x-12)=864【解析】设矩形田地的长为x步,那么宽就应该是(x−12)步.根据矩形面积=长×宽,得:x(x−12)=864.故答案为x(x−12)=864.12、【分析】根据题意可知密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,直接利用概率公式求解即可.【详解】解:∵密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,∴小丽能一次支付成功的概率是.故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、6或14【解析】⊙O1和⊙O2相切,有两种情况需要考虑:内切和外切.内切时,⊙O2的半径=圆心距+⊙O1的半径;外切时,⊙O2的半径=圆心距-⊙O1的半径.【详解】若⊙与⊙外切,则有4+R=10,解得:R=6;若⊙与⊙内切,则有R-4=10,解得:R=14,故答案为6或14.14、1【分析】根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.【详解】解:∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案为1.【点睛】此题考查旋转的性质,即图形旋转后与原图形全等.15、11.25【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,证△DOA∽△ABA1,再求出AB,BA1,面积即可求出;求出第2个正方形的边长;再求出第3个正方形边长;依此类推得出第2019个正方形的边长,求出面积即可.【详解】∵四边形ABCD是正方形,
∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠DOA=∠ABA1,
∴△DOA∽△ABA1,
∴,
∵AB=AD=,
∴BA1=,
∴第2个正方形A1B1C1C的边长A1C=A1B+BC=,第2个正方形A1B1C1C的面积()2=11.25
同理第3个正方形的边长是=()2,
第4个正方形的边长是()3,,
第2019个正方形的边长是()2018,面积是[()2018]2=5×()2018×2=故答案为:(1)11.25;(2)【点睛】本题考查了正方形的性质,相似三角形的判定与性质,依次求出正方形的边长是解题的关键.16、12【分析】铅球落地时,高度,把实际问题理解为当时,求x的值即可.【详解】铅球推出的距离就是当高度时x的值当时,解得:(不合题意,舍去)则铅球推出的距离是1.此时铅球行进高度是2故答案为:1;2.【点睛】本题考查了二次函数的应用,理解铅球推出的距离就是当高度时x的值是解题关键.17、1【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB=50,CD=15,CE=18,即,,解得x=1,经检验,x=1是原方程的解,即高为50m的旗杆的影长为1m.故答案为:1.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.18、,增大.【解析】根据反比例函数的图象所在的象限可以确定k的符号;根据图象可以直接回答在图象的每一支上,y随x的增大而增大.【详解】根据图象知,该函数图象经过第二、四象限,故k<0;
由图象可知,反比例函数y=在图象的每一支上,y随x的增大而增大.
故答案是:<;增大.【点睛】本题考查了反比例函数的图象.解题时,采用了“数形结合”的数学思想.三、解答题(共66分)19、(1)4;(2)48.【分析】(1)根据中点值的定义进行求解即可;(2)根据中点值的定义可求得m的值,再将方程的根代入方程可求得n的值,由此即可求得答案.【详解】(1),x2-2×4x+3=0,42-3=13>0,所以中点值为4,故答案为4;(2)由中点值的定义得:,,,将代入方程,得:,,.【点睛】本题考查了一元二次方程的根,新定义,弄懂新定义是解题的关键.20、见解析【分析】通过角度转化,先求出∠D=∠B,然后根据∠C=∠DFG=90°,可证相似.【详解】∵DF⊥BC于F,∠C=90°∴∠DFG=∠C=90°又DE⊥AB于点E∴∠DGB+∠B=90°又∠DGB+∠D=90°∴∠B=∠D∴△DFG∽△BCA.【点睛】本题考查证相似,解题关键是通过角度转化,得出∠D=∠B.21、(1)详见解析;(2)1.【分析】(1)根据一元二次方程根的判别式,即可得到结论;(2)由一元二次方程根与系数的关系,得,,进而得到关于m的方程,即可求解.【详解】(1)∵方程是关于的一元二次方程,∴,∵,∴方程总有两个实根;(2)设方程的两根为,,则,根据题意得:,解得:,(舍去),∴的值为1.【点睛】本题主要考查一元二次方程根的判别式以及根与系数的关系,掌握一元二次方程根的判别式以及根与系数的关系是解题的关键.22、(1),;(2),【分析】(1)移项,两边同时加1,开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1),.(2),,.【点睛】本题考查了解一元二次方程,有直接开平方法、配方法、公式法、因式分解法,仔细观察运用合适的方法能简便计算.23、(1)①1;②m>2或m<0;(2)﹣<a≤﹣或a=1.【分析】(1)当a=1时,①根据二次函数一般式对称轴公式,即可求得抛物线G的对称轴;②根据抛物线的对称性求得关于对称轴的对称点为,再利用二次函数图像的增减性即可求得答案;(2)根据平移的性质得出、,由题意根据函数图象分三种情况进行讨论,即可得解.【详解】解:(1)①∵当a=1时,抛物线G:y=ax2﹣2ax+1(a≠0)为:∴抛物线G的对称轴为;②画出函数图象:∵在抛物线G上有两点(2,y1),(m,y2),且y2>y1,,∴①当时,随的增大而增大,此时有;②当时,随的增大而减小,抛物线G上点关于对称轴的对称点为,此时有.∴m的取值范围是或;(2)∵抛物线G:y=ax2﹣2ax+1(a≠0的对称轴为x=1,且对称轴与x轴交于点M∴点M的坐标为(1,0)∵点M与点A关于y轴对称∴点A的坐标为(﹣1,0)∵点M右移3个单位得到点B∴点B的坐标为(1,0)依题意,抛物线G与线段AB恰有一个公共点把点A(﹣1,0)代入y=ax2﹣2ax+1,可得;把点B(1,0)代入y=ax2﹣2ax+1,可得;把点M(1,0)代入y=ax2﹣2ax+1,可得a=1.根据所画图象可知抛物线G与线段AB恰有一个公共点时可得:或.故答案是:(1)①1;②m>2或m<0;(2)或【点睛】本题考查了二次函数图像的性质、二次函数图象上的点的坐标特征以及坐标平移,解决本题的关键是综合利用二次函数图象的性质.24、(1);(2)【分析】(1)直接利用概率公式计算得出答案;(2)直接利用树状图法得出所有符合题意情况,进而求出概率.【详解】(1)P(第一次甲将花传给丁)=;(2)如图所示:,共有9种等可能的结果,其中符合要求的结果有3种,故P(经过两次传花,花恰好回到甲手里)==.【点睛】此题主要考查了树状图法求概率,正确画出树状图是解题关键.25、(1);(2);(3).【分析】(1)由可得DE的长,利用勾股定理可得AE的长,又易证,由相似三角形的性质可得,求解即可得;(2)如图(见解析),连接AC与BD交于点O,由正方形的性质可知,,,设,在中,可求出,从而可得DF和BF的长,即可得出答案;(3)设正方形的边长,可得DE、AO、BO、BD的长,由可得BF的长,又根据可得BG的长,从而可得的面积,用正方形的面积减去三个三角形的面积可得四边形AGCE的面积,再利用二次函数的性质求解的最大值.【详解】(1)为CD中点,,,即又;(2)如图,连接AC与BD交于点O由正方形的性质得,设在中,,;(3)设正方形的边长,则由(1)知,又又又由二次函数图象的性质得:当时,有最大值,最大值为.【点睛】本题考查了相似三角形的判定定理和性质、正切三角函数、二次函数图象的性质,难度较大的是题(3),利用相似三角形的性质求出BG的长是解题关键.26、(1);(2)3;(3).【分析】(1)利用待定系数法进行求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024园林绿化工程土壤改良与植保服务合同
- 2024热量表购销合同范文
- 2024年度城市基础设施建设与运营合同
- 2024年二手房定金合同示范文本
- 2024年度物流运输合同运输方式与时间安排
- 师说课文课件教学课件
- 2024年冷鲜电商物流配送服务合同
- 2024年度研发技术转让合同
- 2024年度建筑工程安全生产管理合同
- 2024年度BIM模型数据共享与交换合同
- 肠梗阻护理和查房课件
- 苏教版数学二年级上册《观察物体》课件(合肥市公开课)
- 八年级历史上册材料题汇编
- 厂房压缩空气管道安装工程施工方案设计
- C#50个经典小程序(新手必备)
- 高分子物理chapter7粘弹性
- 通信工程专业英语论文
- 智能化系统安装调试测试验收的方案说明
- 工程数量控制管理办法
- 3,4-二氯苯胺的理化性质及危险特性表
- 港口危险货物版安全管理人员部分机考试题综述
评论
0/150
提交评论