江苏省江都区国际学校2025届数学九上期末综合测试模拟试题含解析_第1页
江苏省江都区国际学校2025届数学九上期末综合测试模拟试题含解析_第2页
江苏省江都区国际学校2025届数学九上期末综合测试模拟试题含解析_第3页
江苏省江都区国际学校2025届数学九上期末综合测试模拟试题含解析_第4页
江苏省江都区国际学校2025届数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省江都区国际学校2025届数学九上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知⊙O的半径为3cm,线段OA=5cm,则点A与⊙O的位置关系是()A.A点在⊙O外 B.A点在⊙O上 C.A点在⊙O内 D.不能确定2.己知的半径为,点是线段的中点,当时,点与的位置关系是()A.点在外 B.点在上 C.点在内 D.不能确定3.一根水平放置的圆柱形输水管横截面积如图所示,其中有水部分水面宽8米,最深处水深2米,则此输水管道的半径是()A.4米 B.5米 C.6米 D.8米4.如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3π B.6π C.9π D.12π5.若点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是()A.<< B.<< C.<< D.<<6.若关于x的一元二次方程x2+2x﹣m=0的一个根是x=1,则m的值是()A.1 B.2 C.3 D.47.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1: D.:18.若一个三角形的两条边的长度分别为2和4,且第三条边的长度是方程的解,则它的周长是()A.10 B.8或10 C.8 D.69.如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A. B. C. D.10.如图,在平行四边形中,点是上任意一点,过点作交于点,连接并延长交的延长线于点,则下列结论中错误的是()A. B. C. D.11.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2 B.cm2 C.cm2 D.()ncm212.已知关于轴对称点为,则点的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出______个.14.如图,是的直径,点、在上,连结、、、,若,,则的度数为________.15.若、为关于x的方程(m≠0)的两个实数根,则的值为________.16.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.17.反比例函数y=的图象经过点(﹣2,3),则k的值为_____.18.已知a+b=0目a≠0,则=_____.三、解答题(共78分)19.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.20.(8分)如图,在中,点在边上,.点在边上,.(1)求证:;(2)若,求的长.21.(8分)(2016山东省聊城市)如图,在直角坐标系中,直线与反比例函数的图象交于关于原点对称的A,B两点,已知A点的纵坐标是1.(1)求反比例函数的表达式;(2)将直线向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.22.(10分)如图,矩形中,.为边上一动点(不与重合),过点作交直线于.(1)求证:;(2)当为中点时,恰好为的中点,求的值.23.(10分)如图,已知△ABC,∠B=90゜,AB=3,BC=6,动点P、Q同时从点B出发,动点P沿BA以1个单位长度/秒的速度向点A移动,动点Q沿BC以2个单位长度/秒的速度向点C移动,运动时间为t秒.连接PQ,将△QBP绕点Q顺时针旋转90°得到△,设△与△ABC重合部分面积是S.(1)求证:PQ∥AC;(2)求S与t的函数关系式,并直接写出自变量t的取值范围.24.(10分)已知ΔABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出ΔABC绕点C按顺时针方向旋转;90°后的.25.(12分)如图,在中,是内心,,是边上一点,以点为圆心,为半径的经过点,交于点.(1)求证:是的切线;(2)连接,若,,求圆心到的距离及的长.26.如图,四边形ABCD内接于⊙O,∠1至∠6是六个不同位置的圆周角.(1)分别写出与∠1、∠2相等的圆周角,并求∠1+∠2+∠3+∠4的值;(2)若∠1-∠2=∠3-∠4,求证:AC⊥BD.

参考答案一、选择题(每题4分,共48分)1、A【详解】解:∵5>3∴A点在⊙O外故选A.【点睛】本题考查点与圆的位置关系.2、C【分析】首先根据题意求出OA,然后和半径比较大小即可.【详解】由已知,得OA=OP=4cm,∵的半径为∴OA<5∴点在内故答案为C.【点睛】此题主要考查点和圆的位置关系,解题关键是找出点到圆心的距离.3、B【详解】解:∵OC⊥AB,AB=8米,∴AD=BD=4米,设输水管的半径是r,则OD=r﹣2,在Rt△AOD中,∵OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=1.故选B.【点睛】本题考查垂径定理的应用;勾股定理.4、B【解析】分析:直接利用弧长公式计算得出答案.详解:的展直长度为:=6π(m).故选B.点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.5、D【分析】先根据反比例函数中k>1判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数y=中k>1,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣2<1,∴点C(﹣2,y2)位于第三象限,∴y2<1,∵1<1<2,∴点A(1,y1),B(2,y2)位于第一象限,∴y1>y2>1.∴y1>y2>y2.故选:D.【点睛】本题考查的是反比例函数的性质,掌握反比例函数图象所在象限及增减性是解答此题的关键.6、C【分析】根据一元二次方程的解的定义,把x=1代入方程得1+2﹣m=0,然后解关于m的一次方程即可.【详解】解:把x=1代入x2+2x﹣m=0得1+2﹣m=0,解得m=1.故选:C.【点睛】本题考查一元二次的代入求参数,关键在于掌握基本运算方法.7、A【解析】根据坡面距离和垂直距离,利用勾股定理求出水平距离,然后求出坡度.【详解】水平距离==4,则坡度为:1:4=1:1.故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是掌握坡度的概念:坡度是坡面的铅直高度h和水平宽度l的比.8、A【分析】本题先利用因式分解法解方程,然后利用三角形三边之间的数量关系确定第三边的长,最后求出周长即可.【详解】解:,,∴;由三角形的三边关系可得:腰长是4,底边是2,所以周长是:2+4+4=10.故选A.【点睛】本题考察了一元二次方程的解法与三角形三边之间的数量关系.9、C【分析】连接BH,BH1,先证明△OBH≌△O1BH1,再根据勾股定理算出BH,再利用扇形面积公式求解即可.【详解】∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面积公式可得.故选C.【点睛】本题考查全等三角形的判定及性质、勾股定理、扇形面积的计算,利用全等对面积进行等量转换方便计算是关键.10、C【分析】根据平行四边形的性质可得出AD=EF=BC、AE=DF、BE=CF,然后根据相似三角形的对应边成比例一一判断即可.【详解】∵四边形ABCD为平行四边形,EF∥BC,∴AD=EF=BC,AE=DF,BE=CF.A.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论A正确;B.∵AD∥CK,∴△ADF∽△KCF,∴,∴,故结论B正确;C.∵AD∥CK,∴△ADF∽△KCF,∴,∴,即,故结论C错误;D.∵ABCD是平行四边形,∴∠B=∠D.∵AD∥BK,∴∠DAF=∠K,∴△ADF∽△KBA,∴,即,故结论D正确.故选:C.【点睛】本题考查了相似三角形的判定与性以及平行四边形的性质,根据相似三角形的性质逐一分析四个结论的正误是解题的关键.11、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和.【详解】由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n-1)=cm1.故选B.【点睛】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.12、D【分析】利用关于x轴对称的点坐标的特点即可解答.【详解】解:∵关于轴对称点为∴的坐标为(-3,-2)故答案为D.【点睛】本题考查了关于x轴对称的点坐标的特点,即识记关于x轴对称的点坐标的特点是横坐标不变,纵坐标变为相反数.二、填空题(每题4分,共24分)13、4【解析】试题分析:如图,能画4个,分别是:以D为圆心,AB为半径画圆;以C为圆心,CA为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形;以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形.因此最多能画出4个考点:作图题.14、°【分析】先由直径所对的圆周角为90°,可得:∠ADB=90°,根据同圆或等圆中,弦相等得到弧相等得到圆周角相等,得到∠A的度数,根据直角三角形的性质得到∠ABD的度数,即可得出结论.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵BD=CD,∴弧BD=弧CD,∴∠A=∠DBC=20°,∴∠ABD=90°-20°=70°,∴∠ABC=∠ABD-∠DBC=70°-20°=50°.故答案为:50°.【点睛】本题考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,直径所对的圆周角为90°.15、-2【分析】根据根与系数的关系,,代入化简后的式子计算即可.【详解】∵,,∴,故答案为:【点睛】本题主要考查一元二次方程ax2+bx+c=0的根与系数关系,熟记:两根之和是,两根之积是,是解题的关键.16、.【分析】根据题意,用的面积减去扇形的面积,即为所求.【详解】由题意可得,AB=2BC,∠ACB=90°,弓形BD与弓形AD完全一样,则∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=4,∴阴影部分的面积为:=,故答案为:.【点睛】本题考查不规则图形面积的求法,属中档题.17、-1【解析】将点(−2,3)代入解析式可求出k的值.【详解】把(−2,3)代入函数y=中,得3=,解得k=−1.故答案为−1.【点睛】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.18、1【分析】先将分式变形,然后将代入即可.【详解】解:,故答案为1【点睛】本题考查了分式,熟练将式子进行变形是解题的关键.三、解答题(共78分)19、解:(1)见解析(2)【分析】(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果;(2)从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【详解】解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图如图所示,由图可知,共有12种等可能结果;(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为.【点睛】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.20、(1)证明见解析;(2).【分析】(1)先通过平角的度数为180°证明,再根据即可证明;(2)根据得出相似比,即可求出的长.【详解】(1)证明:,又(2)【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.21、(1);(2).【解析】试题分析:(1)根据题意,将y=1代入一次函数的解析式,求出x的值,得到A点的坐标,再利用反比例函数的坐标特征求出反比例函数的解析式;(2)根据A、B点关于原点对称,可求出B点的坐标及线段AB的长度,设出平移后的直线解析式,根据平行线间的距离,由三角形的面积求出关于b的一元一次方程即可求解.试题解析:(1)令一次函数y=﹣x中y=1,则1=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,1).∵点A(﹣6,1)在反比例函数y=的图象上,∴k=﹣6×1=﹣12,∴反比例函数的表达式为y=﹣.(2)设平移后直线于y轴交于点F,连接AF、BF如图所示.设平移后的解析式为y=﹣x+b,∵该直线平行直线AB,∴S△ABC=S△ABF,∵△ABC的面积为42,∴S△ABF=OF•(xB﹣xA)=42,由对称性可知:xB=﹣xA,∵xA=﹣6,∴xB=6,∴b×12=42,∴b=2.∴平移后的直线的表达式为:y=﹣x+2.22、(1)见解析;(2)的值为.【分析】(1)根据矩形的性质可得,根据余角的性质可得,进而可得结论;(2)根据题意可得BP、CP、CE的值,然后根据(1)中相似三角形的性质可得关于m的方程,解方程即得结果.【详解】解:(1)证明:四边形是矩形,,,,,,∴∽;(2)为中点,为的中点,且,,,,∵∽,,即,解得:,即的值为.【点睛】本题考查了矩形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握基本知识是解题关键.23、(1)见解析;(2)【分析】(1)由题意可得出,继而可证明△BPQ∽△BAC,从而证明结论;(2)由题意得出QP`⊥AC,分三种情况利用相似三角形的判定及性质讨论计算.【详解】解:(1)∵BP=t,BQ=2t,AB=3,BC=6∴∵∠B=∠B∴△BPQ∽△BAC∴∠BPQ=∠A∴PQ∥AC(2)∵BP=tBQ=2t∴P`Q=∵AB=3BC=6∴AC=3∵PQ∥AC∴QP`⊥AC当0<t≤时,S=t2当<t≤1时:设QP`交AC于点MP`B`交AC于点N∴∠QMC=∠B=90°∴△QMC∽△ABC∴∴∴QM=∵P`Q=t∴P`M=又∵∠P`=∠BPQ=∠A∴△P`NM∽△ACB∴∴MN=2P`M∴S△P`MN=P`M·MN=P`M2=∴当1<t≤3时设QB`交AC于点H∵∠HQM=∠PQB∴△HMQ∽△PBQ∴∴MH=MQ∴综合上所述:【点睛】本题是一道关于相似的综合题目,难度较大,涉及的知识点有相似三角形的判定及性质、勾股定理、三角形面积公式、旋转的性质等,需要有数形结合的能力以及较强的计算能力.24、(1)A(0,4),C(3,1);(2)详见解析【分析】(1)直接从平面直角坐标系写出点A和点C的坐标即可;(2)根据找出点A、B、C绕点C顺时针方向旋转90°后的对应点A'、B'、C'的位置,然后顺次连接即可.【详解】解:(1)由图可得,A(0,4)、C(3,1);(2)如图,△A'B'C'即为所求.【点睛】本题考查了利用旋转变换作图和平面直角坐标系,根据旋转的性质准确找出对应点是解答本题的关键.25、(1)见解析;(2)点到的距离是1,的长度【分析】(1)连接OI,延长AI交BC于点D,根据内心的概念及圆的性质可证明OI∥BD,再根据等腰三角形的性质及平行线的性质可证明∠AIO=90°,从而得到结论;(2)过点O作OE⊥BI,利用垂径定理可得到OE平分BI,再根据圆的性质及中位线的性质即可求出O到BI的距离;根据角平分线及圆周角定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论