河南省濮阳市濮阳县2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第1页
河南省濮阳市濮阳县2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第2页
河南省濮阳市濮阳县2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第3页
河南省濮阳市濮阳县2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第4页
河南省濮阳市濮阳县2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x=3500B.2500(1+x)=3500C.2500(1+x%)=3500D.2500(1+x)+2500(1+x)=35002.如图,在RtΔABC中∠C=90°,AC=6,BC=8,则sin∠A的值()A. B. C. D.3.使分式13-x有意义的xA.x≠3 B.x=3 C.x≠0 D.x=04.已知二次函数的图象如图所示,则下列结论:①;②;③当时,:④方程有两个大于-1的实数根.其中正确的是()A.①②③ B.①②④ C.②③④ D.①③④5.如图,将一副三角板如图放置,如果,那么点到的距离为()A. B. C. D.6.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或67.关于的方程有实数根,则满足()A. B.且 C.且 D.8.如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,A点的横坐标为3,则下列结论:①k=6;②A点与B点关于原点O中心对称;③关于x的不等式<0的解集为x<﹣3或0<x<3;④若双曲线y=(k>0)上有一点C的纵坐标为6,则△AOC的面积为8,其中正确结论的个数()A.4个 B.3个 C.2个 D.1个9.若△ABC∽△ADE,若AB=6,AC=4,AD=3,则AE的长是()A.1 B.2 C.1.5 D.310.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.6二、填空题(每小题3分,共24分)11.如图,在中,,,为边上的一点,且,若的面积为,则的面积为__________.12.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.13.如图,的对角线交于点平分交于点,交于点,且,连接.下列结论:①;②;③:④其中正确的结论有__________(填写所有正确结论的序号)14.在一只不透明的口袋中放入只有颜色不同的白色球3个,黑色球5个,黄色球n个,搅匀后随机从中摸取一个恰好是白色球的概率为,则放入的黄色球数n=_________.15.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出______个小分支.16.如图,反比例函数的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.17.在一个不透明的袋中装有黑色和红色两种颜色的球共个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于,则可估计这个袋中红球的个数约为__________.18.已知圆锥的侧面积为16πcm2,圆锥的母线长8cm,则其底面半径为_____cm.三、解答题(共66分)19.(10分)如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)若∠ABD=α,求∠BDC(用α表示);(2)过点C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长.20.(6分)如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为,吊灯底端B的仰角为,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)21.(6分)已知:如图,在△ABC中,AB=AC,点D、E分别在边BC、DC上,AB2=BE·DC,DE:EC=3:1,F是边AC上的一点,DF与AE交于点G.(1)找出图中与△ACD相似的三角形,并说明理由;(2)当DF平分∠ADC时,求DG:DF的值;(3)如图,当∠BAC=90°,且DF⊥AE时,求DG:DF的值.22.(8分)某区规定学生每天户外体育活动时间不少于1小时,为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如图的统计图表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=_____,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.组别时间(小时)频数(人数)频率A0≤t<0.5200.05B0.5≤t<1a0.3Cl≤t<1.51400.35D1.5≤t<2800.2E2≤t<2.5400.123.(8分)如图,⊙O与△ABC的AC边相切于点C,与BC边交于点E,⊙O过AB上一点D,且DE∥AO,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.24.(8分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?25.(10分)图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?26.(10分)如图,是的角平分线,延长至点使得.求证:.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.【详解】设增长率为x,根据题意得2500×(1+x)2=3500,故选B.【点睛】本题考查一元二次方程的应用--求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”).2、B【分析】由勾股定理可求得AB的长度,再根据锐角三角函数的定义式求得sin∠A的值.【详解】∵AC=6,BC=8,∴AB==,∴sin∠A=.故选B.【点睛】本题考查勾股定理和锐角三角函数的综合应用,根据求得的直角三角形的边长利用锐角三角函数的定义求值是解题关键.3、A【解析】直接利用分式有意义的条件进而得出答案.【详解】分式13-x有意义,则解得:x≠1.故选A.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4、B【分析】①由二次函数的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于二次函数图象与x轴有两个交点即有两个不相等的实数根,由此即可判定的符号;③根据图象知道当x<0时,y不一定小于0,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【详解】解:∵图象开口向下,∴a<0,∵图象与y轴交于正半轴,则c>0,∴ac<0,故选项①正确;∵二次函数图象与x轴有两个交点即有两个不相等的实数根,即,故选项②正确;③当x<0时,有部分图象在y的上半轴即函数值y不一定小于0,故选项③错误;④利用图象与x轴交点都大于-1,故方程有两个大于-1的实数根,故选项④正确;故选:B.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:当时,,然后根据图象判断其值.5、B【分析】作EF⊥BC于F,设EF=x,根据三角函数分别表示出BF,CF,根据BD∥EF得到△BCD∽△FCE,得到,代入即可求出x.【详解】如图,作EF⊥BC于F,设EF=x,又∠ABC=45°,∠DCB=30°,则BF=EF÷tan45°=x,FC=EF÷tan30°=x∵BD∥EF∴△BCD∽△FCE,∴,即解得x=,x=0舍去故EF=,选B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定及解直角三角形的应用.6、D【解析】以AB为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.【点睛】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键.7、A【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.8、A【分析】①由A点横坐标为3,代入正比例函数,可求得点A的坐标,继而求得k值;

②根据直线和双曲线的性质即可判断;

③结合图象,即可求得关于x的不等式<0的解集;

④过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由点C的纵坐标为6,可求得点C的坐标,继而求得答案.【详解】①∵直线y=x与双曲线y=(k>0)交于A、B两点,A点的横坐标为3,∴点A的纵坐标为:y=×3=2,∴点A(3,2),∴k=3×2=6,故①正确;②∵直线y=x与双曲线y=(k>0)是中心对称图形,∴A点与B点关于原点O中心对称,故②正确;③∵直线y=x与双曲线y=(k>0)交于A、B两点,∴B(﹣3,﹣2),∴关于x的不等式<0的解集为:x<﹣3或0<x<3,故③正确;④过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵点C的纵坐标为6,∴把y=6代入y=得:x=1,∴点C(1,6),∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+6)×(3﹣1)=8,故④正确;故选:A.【点睛】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想的应用.9、B【分析】根据相似三角形的性质,由,即可得到AE的长.【详解】解:∵△ABC∽△ADE,∴,∵AB=6,AC=4,AD=3,∴,∴;故选择:B.【点睛】本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.10、C【解析】试题解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故选C.二、填空题(每小题3分,共24分)11、1【分析】首先判定△ADC∽△BAC,然后得到相似比,根据面积比等于相似比的平方可求出△BAC的面积,减去△ADC的面积即为△ABD的面积.【详解】∵∠CAD=∠B,∠C=∠C∴△ADC∽△BAC∴相似比则面积比∴∴故答案为:1.【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形的面积比等于相似比的平方是解题的关键.12、-1或2或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2-4ac=0,据此求解可得.【详解】∵函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2-4ac=16-4(a-1)×2a=0,解得:a1=-1,a2=2,当函数为一次函数时,a-1=0,解得:a=1.故答案为-1或2或1.13、①③④【分析】由四边形ABCD是平行四边形,∠ABC=60°,EC平分∠DCB,得△ECB是等边三角形,结合AB=2BC,得∠ACB=90°,进而得∠CAB=30°,即可判断①;由∠OCF<∠DAO,∠OFC>∠ADO,即可判断②;易证△OEF∽△BCF,得OF=OB,进而得S△AOD=S△BOC=3S△OCF,即可判断③;设OF=a,得DF=4a,BF=2a,即可判断④.【详解】∵四边形ABCD是平行四边形,

∴CD∥AB,OD=OB,OA=OC,

∴∠DCB+∠ABC=180°,

∵∠ABC=60°,

∴∠DCB=120°,

∵EC平分∠DCB,

∴∠ECB=∠DCB=60°,

∴∠EBC=∠BCE=∠CEB=60°,

∴△ECB是等边三角形,

∴EB=BC=EC,

∵AB=2BC,

∴EA=EB=EC,

∴∠ACB=90°,∴∠CAB=30°,即:,故①正确;∵AD∥BC,∴∠ADO=∠CBO,∠DAO=∠BCO,∵∠OCF<∠BCO,∠OFC>∠CBO,∴∠OCF<∠DAO,∠OFC>∠ADO,∴错误,故②错误;

∵OA=OC,EA=EB,

∴OE∥BC,

∴△OEF∽△BCF,∴,

∴OF=OB,

∴S△AOD=S△BOC=3S△OCF,故③正确;

设OF=a,∵OF=OB,∴OB=OD=3a,∴DF=4a,BF=2a,

∴BF2=OF•DF,故④正确;

故答案为:①③④.【点睛】本题主要考查平行四边形的性质定理,相似三角形的判定和性质,三角函数的定义,以及直角三角形的判定和性质,掌握平行四边形的性质定理,相似三角形的判定和性质,是解题的关键.14、1

【分析】根据口袋中装有白球3个,黑球5个,黄球n个,故球的总个数为3+5+n,再根据黄球的概率公式列式解答即可.【详解】∵口袋中装有白球3个,黑球5个,黄球n个,∴球的总个数为3+5+n,∵从中随机摸出一个球,摸到白色球的概率为,即,解得:n=1,故答案为:1.【点睛】本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、6【分析】设这种植物每个支干长出个小分支,根据主干、支干和小分支的总数是43,即可得出关于的一元二次方程,解之取其正值即可得出结论.【详解】解:设这种植物每个支干长出个小分支,依题意,得:,解得:(不合题意,舍去),.故选:.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16、1.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB的值,从而可求得矩形OABC的面积.【详解】∵反比例函数的图象经过点D,∴OA•AD=2.

∵D是AB的中点,

∴AB=2AD.

∴矩形的面积=OA•AB=2AD•OA=2×2=1.故答案为1.考点:反比例函数系数k的几何意义.17、【分析】根据频率的定义先求出黑球的个数,即可知红球个数.【详解】解:黑球个数为:,红球个数:.故答案为6【点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键.18、1【解析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×1π×r×8=16π,解得r=1,然后解关于r的方程即可.【详解】解:设圆锥的底面圆的半径为r,根据题意得×1π×r×8=16π,解得r=1,所以圆锥的底面圆的半径为1cm.故答案为1.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题(共66分)19、(1)∠BDC=α;(2)∠ACE=β;(3)DE=.【分析】(1)连接AD,设∠BDC=γ,∠CAD=β,则∠CAB=∠BDC=γ,证明∠DAB=β−γ,β=90°−γ,∠ABD=2γ,得出∠ABD=2∠BDC,即可得出结果;(2)连接BC,由直角三角形内角和证明∠ACE=∠ABC,由点C为弧ABD中点,得出∠ADC=∠CAD=∠ABC=β,即可得出结果;(3)连接OC,证明∠COB=∠ABD,得出△OCH∽△ABD,则==,求出BD=2OH=10,由勾股定理得出AB==26,则AO=13,AH=AO+OH=18,证明△AHE∽△ADB,得出=,求出AE=,即可得出结果.【详解】(1)连接AD,如图1所示:设∠BDC=γ,∠CAD=β,则∠CAB=∠BDC=γ,∵点C为弧ABD中点,∴,∴∠ADC=∠CAD=β,∴∠DAB=β﹣γ,∵AB为⊙O直径,∴∠ADB=90°,∴γ+β=90°,∴β=90°﹣γ,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣γ)=90°﹣90°+γ+γ=2γ,∴∠ABD=2∠BDC,∴∠BDC=∠ABD=α;(2)连接BC,如图2所示:∵AB为⊙O直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵CE⊥AB,∴∠ACE+∠BAC=90°,∴∠ACE=∠ABC,∵点C为弧ABD中点,∴,∴∠ADC=∠CAD=∠ABC=β,∴∠ACE=β;(3)连接OC,如图3所示:∴∠COB=2∠CAB,∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,∵∠OHC=∠ADB=90°,∴△OCH∽△ABD,∴==,∴BD=2OH=10,∴AB===26,∴AO=13,∴AH=AO+OH=13+5=18,∵∠EAH=∠BAD,∠AHE=∠ADB=90°,∴△AHE∽△ADB,∴=,即=,∴AE=,∴DE=AD﹣AE=24﹣=.【点睛】本题考查了圆周角定理、相似三角形的判定和性质、三角形内角和定理、勾股定理等知识;正确作出辅助线是解题的关键.20、吊灯AB的长度约为1.1米.【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=BD=3(米),在Rt△AEC中,tan∠ACE=,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.21、(1)△ABE、△ADC,理由见解析;(2);(3)【分析】(1)根据相似三角形的判定方法,即可找出与△ACD相似的三角形;(2)由相似三角形的性质,得,由DE=3CE,先求出AD的长度,然后计算得到;(3)由等腰直角三角形的性质,得到∠DAG=∠ADF=45°,然后证明△ADE∽△DFA,得到,求出DF的长度,即可得到.【详解】解:(1)与△ACD相似的三角形有:△ABE、△ADC,理由如下:∵AB2=BE·DC,∴.∵AB=AC,∴∠B=∠C,,∴△ABE∽△DCA.∴∠AED=∠DAC.∵∠AED=∠C+∠EAC,∠DAC=∠DAE+∠EAC,∴∠DAE=∠C.∴△ADE∽△CDA.(2)∵△ADE∽△CDA,DF平分∠ADC,∴,设CE=a,则DE=3CE=3a,CD=4a,∴,解得(负值已舍)∴;(3)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∴∠DAE=∠C=45°,∵DG⊥AE,∴∠DAG=∠ADF=45°,∴AG=DG=,∴,∵∠AED=∠DAC,∴△ADE∽△DFA,∴,∴,∴.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,解题的关键是熟练掌握相似三角形的判定和性质,正确找出证明三角形相似的条件.22、(1)120,补图见解析;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有2800名;(3).【分析】(1)根据A组的频数与频率可求出总人数,乘以B组的频率即可得a值,根据a值补全频数分布直方图即可;(2)用8000乘以每天户外体育活动的时间不足1小时的学生的频率和即可得答案;(3)画树状图得出所有可能的情况数和抽到1名男生和1名女生的情况数,利用概率公式即可得答案.【详解】(1)∵被调查的学生总人数为20÷0.05=400,∴a=400×0.3=120,故答案为:120,补全图形如下:(2)每天户外体育活动的时间不足1小时的学生大约有8000×(0.05+0.3)=2800(名);(3)画树状图为:共有12种等可能的结果数,其中抽到1名男生和1名女生的可能性有6种.∴P(抽到1名男生和1名女学生)==.【点睛】本题主要考查了树状图法或列表法求概率,以及频数分布直方图的运用,解题时注意:当有两个元素时,可用树形图列举,也可以列表列举.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.23、(1)见解析;(2)AC=1【分析】(1)要证AB切线,连接半径OD,证∠ADO=90°即可,由∠ACB=90°,由OD=OE,DE∥OA,可得∠AOD=∠AOC,证△AOD≌△AOC(SAS)即可,(2)AB是⊙O的切线,∠BDO=90°,由勾股定理求BE,BC=BE+EC可求,利用AD,AC是⊙O的切线长,设AD=AC=x,在Rt△ABC中,AB2=AC2+BC2构造方程求AC即可.【详解】(1)证明:连接OD,∵OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中,∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论