版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D2.如图,P(x,y)是反比例函数的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的逐渐增大,矩形OAPB的面积()A.保持不变 B.逐渐增大 C.逐渐减小 D.无法确定3.观察下列四个图形,中心对称图形是()A. B. C. D.4.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10π B.C.π D.π5.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.246.如图,在菱形中,,,则对角线等于()A.2 B.4 C.6 D.87.当取下列何值时,关于的一元二次方程有两个相等的实数根()A.1. B.2 C.4. D.8.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x,则可以列方程为()A. B.C. D.9.一个扇形的半径为4,弧长为,其圆心角度数是()A. B. C. D.10.如图,矩形ABCD中,AB=4,AD=8,E为BC的中点,F为DE上一动点,P为AF中点,连接PC,则PC的最小值是()A.4 B.8 C.2 D.411.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C. D.12.下列事件中,是必然事件的是()A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180° D.经过有交通信号灯的路口,遇到红灯二、填空题(每题4分,共24分)13.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.14.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=____.15.方程x2+2x﹣1=0配方得到(x+m)2=2,则m=_____.16.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为,中轴轴心到地面的距离为,后轮中心与中轴轴心连线与车架中立管所成夹角,后轮切地面于点.为了使得车座到地面的距离为,应当将车架中立管的长设置为_____________.(参考数据:17.微信给甲、乙、丙三人,若微信的顺序是任意的,则第一个微信给甲的概率为_____.18.若2是一元二次方程x2+mx﹣4m=0的一个根,则另一个根是_________.三、解答题(共78分)19.(8分)如图,一艘船由A港沿北偏东65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向.求:(1)∠C的度数;(2)A,C两港之间的距离为多少km.20.(8分)某校九年级举行毕业典礼,需要从九年级班的名男生名女生中和九年级班的名男生名女生中各随机选出名主持人.(1)用树状图或列表法列出所有可能情形;(2)求名主持人恰好男女的概率.21.(8分)一艘运沙船装载着5000m3沙子,到达目的地后开始卸沙,设平均卸沙速度为v(单位:m3/小时),卸沙所需的时间为t(单位:小时).(1)求v关于t的函数表达式,并用列表描点法画出函数的图象;(2)若要求在20小时至25小时内(含20小时和25小时)卸完全部沙子,求卸沙的速度范围.22.(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为40米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为102平方米,求x;(2)若使这个苗圃园的面积最大,求出x和面积最大值.23.(10分)“辑里湖丝”是世界闻名最好的蚕丝,是浙江省的传统丝织品,属于南浔特产,南浔某公司用辑丝为原料生产的新产品丝巾,其生产成本为20元/条.此产品在网上的月销售量y(万件)与售价x(元/件)之间的函数关系为y=﹣0.2x+10(由于受产能限制,月销售量无法超过4万件).(1)若该产品某月售价为30元/件时,则该月的利润为多少万元?(2)若该产品第一个月的利润为25万元,那么该产品第一个月的售价是多少?(3)第二个月,该公司将第一个月的利润25万元(25万元只计入第二个月成本)投入研发,使产品的生产成本降为18元/件.为保持市场占有率,公司规定第二个月产品售价不超过第一个月的售价.请计算该公司第二个月通过销售产品所获的利润w为多少万元?24.(10分)(1)解方程:x2﹣4x﹣3=0(2)计算:25.(12分)在平面直角坐标系中,二次函数y=ax2+2nx+c的图象过坐标原点.(1)若a=-1.①当函数自变量的取值范围是-1≤x≤2,且n≥2时,该函数的最大值是8,求n的值;②当函数自变量的取值范围是时,设函数图象在变化过程中最高点的纵坐标为m,求m与n的函数关系式,并写出n的取值范围;(2)若二次函数的图象还过点A(-2,0),横、纵坐标都是整数的点叫做整点.已知点,二次函数图象与直线AB围城的区域(不含边界)为T,若区域T内恰有两个整点,直接写出a的取值范围.26.据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.
参考答案一、选择题(每题4分,共48分)1、B【解析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以随着x的逐渐增大,矩形OAPB的面积将不变.【详解】解:依题意有矩形OAPB的面积=2×|k|=3,所以随着x的逐渐增大,矩形OAPB的面积将不变.
故选:A.【点睛】本题考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.3、C【分析】根据中心对称图形的定义即可判断.【详解】在平面内,若一个图形可以绕某个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形,根据定义可知,C选项中的图形是中心对称图形.故答案选:C.【点睛】本题考查的知识点是中心对称图形,解题的关键是熟练的掌握中心对称图形.4、C【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC=,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=.故选C.5、C【分析】根据用频率估计概率可知:摸到白球的概率为0.25,根据概率公式即可求出小球的总数,从而求出红球的个数.【详解】解:小球的总数约为:6÷0.25=24(个)则红球的个数为:24-6=18(个)故选C.【点睛】此题考查的是用频率估计概率和根据概率求小球的总数,掌握概率公式是解决此题的关键.6、A【分析】由菱形的性质可证得为等边三角形,则可求得答案.【详解】四边形为菱形,,,,,为等边三角形,,故选:.【点睛】主要考查菱形的性质,利用菱形的性质证得为等边三角形是解题的关键.7、A【分析】根据一元二次方程的判别式判断即可.【详解】要使得方程由两个相等实数根,判别式△=(-2)2-4m=4-4m=0,解得m=1.故选A.【点睛】本题考查一元二次方程判别式的计算,关键在于熟记判别式与根的关系.8、D【分析】根据题意分别用含x式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为x,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2,根据题意可列方程为.故选:D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.9、C【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为,∴解得:,即其圆心角度数是故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.10、D【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当CP⊥P1P2时,PC取得最小值;由矩形的性质以及已知的数据即可知CP1⊥P1P2,故CP的最小值为CP1的长,由勾股定理求解即可.【详解】解:如图:当点F与点D重合时,点P在P1处,AP1=DP1,当点F与点E重合时,点P在P2处,EP2=AP2,∴P1P2∥DE且P1P2=DE当点F在ED上除点D、E的位置处时,有AP=FP由中位线定理可知:P1P∥DF且P1P=DF∴点P的运动轨迹是线段P1P2,∴当CP⊥P1P2时,PC取得最小值∵矩形ABCD中,AB=4,AD=8,E为BC的中点,∴△ABE、△CDE、△DCP1为等腰直角三角形,DP1=2∴∠BAE=∠DAE=∠DP1C=45°,∠AED=90°∴∠AP2P1=90°∴∠AP1P2=45°∴∠P2P1C=90°,即CP1⊥P1P2,∴CP的最小值为CP1的长在等腰直角CDP1中,DP1=CD=4,∴CP1=4∴PB的最小值是4.故选:D.【点睛】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.11、A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.12、C【解析】事先能肯定它一定会发生的事件称为必然事件,根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、购买一张彩票,中奖,是随机事件,故A不符合题意;
B、射击运动员射击一次,命中靶心,是随机事件,故B不符合题意;
C、任意画一个三角形,其内角和是180°,是必然事件,故C符合题意;
D、经过有交通信号灯的路口,遇到红灯,是随机事件,故D不符合题意;
故选:C.【点睛】本题考查了随机事件、不可能事件,随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.二、填空题(每题4分,共24分)13、50(1﹣x)2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.14、m【分析】利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.【详解】如图:根据题意得:BG=AF=AE=1.6m,AB=1m,∵BG∥AF∥CD,∴△EAF∽△ECD,△ABG∽△ACD,∴AE:EC=AF:CD,AB:AC=BG:CD,设BC=xm,CD=ym,则CE=(x+2.6)m,AC=(x+1)m,∴,解得:x=,y=,∴CD=m.∴灯泡与地面的距离为米,故答案为m.15、1【解析】试题解析:x2+2x-1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,则m=1;故答案为1.16、60【分析】先计算出AD=33cm,结合已知可知AC∥DF,由由题意可知BE⊥ED,即可得到BE⊥AC,然后再求出BH的长,然后再运用锐角三角函数即可求解.【详解】解:∵车轮的直径为∴AD=33cm∵CF=33cm∴AC∥DF∴EH=AD=33cm∵BE⊥ED∴BE⊥AC∵BH=BE-EH=90-33=57cm∴∠sinACB=sin72°==0.95∴BC=57÷0.95=60cm故答案为60.【点睛】本题考查了解直角三角形的应用,将实际问题中抽象成数学问题是解答本题的关键.17、【分析】根据题意,微信的顺序是任意的,微信给甲、乙、丙三人的概率都相等均为.【详解】∵微信的顺序是任意的,∴微信给甲、乙、丙三人的概率都相等,∴第一个微信给甲的概率为.故答案为.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、-4【分析】将x=2代入方程求出m的值,再解一元二次方程求出方程的另一个根.【详解】解:将x=2代入方程得,,解得,∴一元二次方程为解方程得:∴方程得另一个根为-4故答案为:-4.【点睛】本题考查的知识点是解一元二次方程,属于基础题目,比较容易掌握.三、解答题(共78分)19、(1)∠C=60°(2)AC=【分析】(1)根据方位角的概念确定∠ACB=40°+20°=60;(2)AB=30,过B作BE⊥AC于E,解直角三角形即可得到结论.【详解】解:(1)如图,在点C处建立方向标根据题意得,AF∥CM∥BD∴∠ACM=∠FAC,∠BCM=∠DBC∴∠ACB=∠ACM+∠BCM=40°+20°=60°,(2)∵AB=30,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30,∴AE=BE=AB=30km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=10km,
∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km,【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.20、(1)答案见解析;(2)【分析】(1)首先根据题意列表,由树形法可得所有等可能的结果;(2)由选出的是2名主持人恰好1男1女的情况,根据概率公式即可求得解.【详解】解:(1)用树状图表示如下:(A表示男生,B表示女生)由树状图知共有6种等可能结果(2)由树状图知:2名主持人1男1女有3种,即(A1,B2),(A1,B2)(A2,B1),所以P(恰好一男一女)=【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比.21、(1)v=,见解析;(2)200≤v≤1【分析】(1)直接利用反比例函数解析式求法得出答案;(2)直接利用(1)中所求解析式得出v的取值范围.【详解】(1)由题意可得:v=,列表得:v…1011625…t…246…描点、连线,如图所示:;(2)当t=20时,v==1,当t=25时,v==200,故卸沙的速度范围是:200≤v≤1.【点睛】本题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.22、(1)x=17;(2)当x=11米时,这个苗圃园的面积最大,最大值为198平方米.【分析】(1)根据题意列出方程,解出方程即可;(2)设苗圃园的面积为y平方米,用x表达出y,得到二次函数表达式,根据二次函数的性质,求出面积的最大值,注意考虑是否符合实际情况.【详解】(1)解:根据题意得:,解得:或,∵,∴,∴(2)解:设苗圃园的面积为y平方米,则y=x(40﹣2x)=﹣2x2+40x=∵二次项系数为负,∴苗圃园的面积y有最大值.∴当x=10时,即平行于墙的一边长是20米,20>18,不符题意舍去;∴当x=11时,y最大=198平方米;答:当x=11米时,这个苗圃园的面积最大,最大值为198平方米.【点睛】本题主要考察一元二次方程的实际问题及二次函数的实际问题,解题的关键是能够列出方程或函数表达式,熟练运用二次函数的性质解决实际问题.23、(1)该月的利润为40万元;(1)该产品第一个月的售价是45元;(3)该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【分析】(1)根据题意销售量与售价的关系式代入值即可求解;(1)根据月利润等于销售量乘以单件利润即可求解;(3)根据根据(1)中的关系利用二次函数的性质即可求解.【详解】(1)根据题意,得:当x=30时,y=﹣0.1×30+10=4,4×10=40,答:该月的利润为40万元.(1)15=(x﹣10)(﹣0.1x+10),解得x1=45,x1=15(月销售量无法超过4万件,舍去).答:该产品第一个月的售价是45元.(3)∵由于受产能限制,月销售量无法超过4万件,且公司规定第二个月产品售价不超过第一个月的售价.∴30≤x≤45,w=y(x﹣18)﹣15=(﹣0.1x+10)(x﹣18)﹣15=﹣0.1x1+13.6x﹣105=﹣0.1(x﹣34)1+16.1.当30≤x≤45时,13≤w≤16.1.答:该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【点睛】本题主要考查了二次函数的应用,解决本题的关键是掌握销售问题各个量之间的关系并熟练运用二次函数.24、(1)x1=2+,x2=2﹣;(2)1【分析】(1)方程利用配方法求出解即可;(2)原式利用二次根式性质,绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可求出值.【详解】(1)方程整理得:x2﹣4x=3,配方得:x2﹣4x+4=3+4,即(x﹣2)2=7,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)=1.【点睛】本题考查了利用配方法求一元二次方程的解以及实数的混合运算,涉及了:零
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考地理一轮复习 课件 第15讲 植被
- 中班体育课教案详案:趣味彩瓶
- 肺部感染的护理
- 手术切口的选择
- 大班语言教案:盆和瓶
- 小班体育活动教案:小蚂蚁过河
- 二年级上数学教案-认识时间(练习课)-人教新课标
- 急救与急救常识论文
- 教师作业布置培训
- 游戏活动的组织与引导
- 主要负责人和安全生产管理人员安全培训课件初训
- 2023年连云港港口控股集团有限公司招聘笔试题库及答案解析
- 初中议论文写作讲解完整版课件
- 图文 非暴力沟通
- 早期胃癌筛查课件
- 提高住院患者抗菌药物治疗前送检率培训
- 成人高级心血管生命支持(ACLS)课件
- 五赛五比真假烟鉴别题库试题含答案
- 《学校社会工作实务》课件合集
- 京东考试答案
- 通信光缆线路施工、光缆接续施工技术交底
评论
0/150
提交评论