贵阳市重点中学2022-2023学年数学九年级第一学期期末考试试题含解析_第1页
贵阳市重点中学2022-2023学年数学九年级第一学期期末考试试题含解析_第2页
贵阳市重点中学2022-2023学年数学九年级第一学期期末考试试题含解析_第3页
贵阳市重点中学2022-2023学年数学九年级第一学期期末考试试题含解析_第4页
贵阳市重点中学2022-2023学年数学九年级第一学期期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列一元二次方程中有两个不相等的实数根的方程是()A. B.C. D.2.下列图像中,当时,函数与的图象时()A. B. C. D.3.一元二次方程4x2﹣3x+=0根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根4.如图,点A、B、C都在上,若∠AOB=72°,则∠ACB的度数为()A.18° B.30° C.36° D.72°5.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为(

)A.2cm B.3cm C.4cm D.1cm6.函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B.C. D.7.在下列图形中,不是中心对称图形的是()A. B. C. D.8.如图,在矩形ABCD中,DE⊥AC垂足为F,交BC于点E,BE=2EC,连接AE.则tan∠CAE的值为()A. B. C. D.9.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A. B. C. D.10.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6m11.下列方程中不是一元二次方程的是()A. B. C. D.12.二次函数的图象如图所示,其对称轴为,有下列结论:①;②;③;④对任意的实数,都有,其中正确的是()A.①② B.①④ C.②③ D.②④二、填空题(每题4分,共24分)13.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.14.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M、N在AC边上,若△OMN∽△BOC,点M的对应点是O,则CM=______.15.点在抛物线上,则__________.(填“>”,“<”或“=”).16.如果四条线段m,n,x,y成比例,若m=2,n=8,y=20,则线段x的长为________.17.如图,P是反比例函数图象在第二象限上一点,且矩形PEOF的面积是3,则反比例函数的解析式为___________.18.如图,是⊙的直径,,点是的中点,过点的直线与⊙交于、两点.若,则弦的长为__________.三、解答题(共78分)19.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.20.(8分)如图1,在平面直角坐标系中,已知的半径为5,圆心的坐标为,交轴于点,交轴于,两点,点是上的一点(不与点、、重合),连结并延长,连结,,.

(1)求点的坐标;(2)当点在上时.①求证:;②如图2,在上取一点,使,连结.求证:;(3)如图3,当点在上运动的过程中,试探究的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.21.(8分)某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)(1)试求与之间的函数表达式.(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?22.(10分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.(1)方程x2-8x+3=0的中点值是________;(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.23.(10分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.24.(10分)已知关于x的一元二次方程有两个不相等的实数根.求k的取值范围;若k为负整数,求此时方程的根.25.(12分)(1)计算.sin30°tan45°-cos30°tan30°+sin45°tan60°(2)已知cos(180°﹣a)=﹣cosa,请你根据给出的公式试求cos120°的值26.如图,点分别在的边上,已知.(1)求证:.(2)若,求的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=-16<0,方程没有实数根;D、△=1-4=-3<0,方程没有实数根.故选:B.2、D【分析】根据直线直线y=ax+b经过的象限得到a>0,b<0,与ab>0矛盾,则可对A进行判断;根据抛物线y=ax2开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,由此可对B进行判断;根据抛物线y=ax2开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,由此可对C进行判断;根据抛物线y=ax2开口向下得到a<0,则直线y=ax+b经过第二、四象限,并且b<0,得到直线与y轴的交点在x轴下方,由此可对D进行判断.【详解】解:A、对于直线y=ax+b,得a>0,b<0,与ab>0矛盾,所以A选项错误;

B、由抛物线y=ax2开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,所以B选项错误;

C、由抛物线y=ax2开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,所以C选项错误;

D、由抛物线y=ax2开口向下得到a<0,则直线y=ax+b经过第二、四象限,由于ab>0,则b<0,所以直线与y轴的交点在x轴下方,所以D选项正确.

故选:D.【点睛】本题考查了一次函数和二次函数的图像与性质,掌握函数的性质,从而判断图像是解题的基础.3、D【分析】根据方程的系数结合根的判别式,即可得出△>0,由此即可得出原方程有两个不相等的实数根.【详解】解:4x2﹣3x+=0,这里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有两个不相等的实数根,故选:D.【点睛】本题考查的知识点是根据一元二次方程根的判别式来判断方程的解的情况,熟记公式是解此题的关键.4、C【详解】解:∵∠AOB=72°,∴∠ACB=∠AOB=36°,故选C.5、A【解析】试题分析:本题的关键是利用弧长公式计算弧长,再利用底面周长=展开图的弧长可得.解答:解:L=,解R=2cm.故选A.考点:弧长的计算.6、D【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论,然后再对照选项即可.【详解】解:分两种情况讨论:①当k<0时,反比例函数y=在二、四象限,而二次函数y=kx2﹣k开口向下,故A、B、C、D都不符合题意;②当k>0时,反比例函数y=在一、三象限,而二次函数y=kx2﹣k开口向上,与y轴交点在原点下方,故选项D正确;故选:D.【点睛】本题主要考查反比例函数与二次函数的图象,掌握k对反比例函数与二次函数的图象的影响是解题的关键.7、C【解析】根据中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A、是中心对称图形,故本选项不符合题意;

B、是中心对称图形,故本选项不符合题意;

C、不是中心对称图形,故本选项符合题意;

D、是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、C【分析】证明△AFD∽△CFE,得出,由△CFE∽△DFC,得出,设EF=x,则DE=3x,再由三角函数定义即可得出答案.【详解】解:设EC=x,∵BE=2EC=2x,∴BC=BE+CE=3x,∵四边形ABCD是矩形,

∴AD=BC=3x,AD∥EC,

∴△AFD∽△CFE,

∴,,设CF=n,设EF=m,

∴DF=3EF=3m,AF=3CF=3n,∵△ECD是直角三角形,,

∴△CFE∽△DFC,

∴,∴,即,

∴,∵,∴tan∠CAE=,

故选:C.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解题的关键.9、A【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率==.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.10、D【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.11、C【分析】根据一元二次方程的定义进行排除选择即可,一元二次方程的关键是方程中只包含一个未知数,且未知数的指数为2.【详解】根据一元二次方程的定义可知含有一个未知数且未知数的指数是2的方程为一元二次方程,所以A,B,D均符合一元二次方程的定义,C选项展开移项整理后不含有未知数,不符合一元二次方程的定义,所以错误,故选C.【点睛】本题考查的是一元二次方程的定义,熟知此定义是解题的关键.12、B【分析】根据二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系逐个判断即可.【详解】抛物线的开口向下对称轴为,异号,则抛物线与y轴的交点在y轴的上方,则①正确由图象可知,时,,即则,②错误由对称性可知,和的函数值相等则时,,即,③错误可化为关于m的一元二次方程的根的判别式则二次函数的图象特征:抛物线的开口向下,与x轴只有一个交点因此,,即,从而④正确综上,正确的是①④故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系,熟练掌握函数的图象与性质是解题关键.二、填空题(每题4分,共24分)13、1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.考点:圆周角定理.14、【分析】根据直角三角形斜边中线的性质可得OC=OA=OB=AB,根据等腰三角形的性质可得∠A=∠OCA,∠OCB=∠B,由相似三角形的性质可得∠ONC=∠OCB,,可得OM=MN,利用等量代换可得∠ONC=∠B,即可证明△CNO∽△ABC,利用外角性质可得∠ACO=∠MOC,可得OM=CM,即可证明CM=CN,利用勾股定理可求出AC的长,根据相似三角形的性质即可求出CN的长,即可求出CM的长.【详解】∵O为Rt△ABC斜边中点,AB=10,BC=6,∴OC=OA=OB=AB=5,AC==8,∴∠A=∠OCA,∠OCB=∠B,∵△OMN∽△BOC,∴∠ONC=∠OCB,,∠COB=∠OMN,∴MN=OM,∠ONC=∠B,∴△CNO∽△ABC,∴,即,解得:CN=,∵∠OMN=∠OCM+∠MOC,∠COB=∠A+∠OCA,∴∠OCM=∠MOC,∴OM=CM,∴CM=MN=CN=.故答案为:【点睛】本题考查直角三角形斜边中线的性质、等腰三角形的性质及相似三角形的判定与性质,直角三角形斜边中线等于斜边的一半;熟练掌握相似三角形的判定定理是解题关键.15、>【分析】把A、B两点的坐标代入抛物线的解析式,求出的值即得答案.【详解】解:把A、B两点的坐标代入抛物线的解析式,得:,,∴>.故答案为:>.【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于基本题型,掌握比较的方法是解答关键.16、1【详解】解:根据题意可知m:n=x:y,即2:8=x:20,解得:x=1.故答案为:117、【分析】根据从反比例函数的图象上任意一点向坐标轴作垂线段,垂线段和坐标轴所围成的矩形的面积是,且保持不变,进行解答即可.【详解】由题意得,∵反比例函数图象在第二象限∴∴反比例函数的解析式为y=-.【点睛】本题属于基础应用题,只需学生熟练掌握反比例函数k的几何意义,即可完成.18、【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【详解】连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为.【点睛】本题考查了垂径定理、勾股定理、等腰直角三角形的判定与性质;熟练掌握垂径定理,由勾股定理求出DE是解决问题的关键.三、解答题(共78分)19、(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.20、(1)(0,4);(2)①详见解析;②详见解析;(3)不变,为.【分析】(1)连结,在中,为圆的半径5,,由勾股定理得(2)①根据圆的基本性质及圆周角定理即可证明;②根据等腰三角形的性质得到,根据三角形的外角定理得到,由①证明得到,即可根据相似三角形的判定进行求解;(3)分别求出点C在B点时和点C为直径AC时,的值,即可比较求解.【详解】(1)连结,在中,=5,,∴∴A(0,4).(2)连结,故,则∵∠ABD+∠ACD=180°,∠HCD+∠ACD=180°,∴∵与是弧所对的圆周角∴=又∴即②∵∴∵,且由(2)得∴∴在与中∴(3)①点C在B点时,如图,AC=2AO=8,BC=0,CD=BD=∴==;当点C为直径AC与圆的交点时,如图∴AC=2r=10∵O,M分别是AB、AC中点,∴BC=2OM=6,∴C(6,-4)∵D(8,0)∴CD=∴==故的值不变,为.【点睛】此题主要考查圆的综合题,解题的关键是熟知圆周角定理、勾股定理及相似三角形的判定.21、(1)w=;(2)游乐场将门票售价定为25元/张时,每天获利最大,最大利润是1500元【分析】(1)根据及利润=票房收入-运营成本即可得出化简即可.(2)根据二次函数的性质及对称轴公式即可得最大值,及x的值.【详解】(1)根据题意,得.(2)∵中,,∴有最大值.当时,最大,最大值为1500.答:游乐场将门票售价定为25元/张时,每天获利最大,最大利润是1500元.【点睛】本题考查了二次函数的实际应用,结合二次函数的性质即可得到最大值.22、(1)4;(2)48.【分析】(1)根据中点值的定义进行求解即可;(2)根据中点值的定义可求得m的值,再将方程的根代入方程可求得n的值,由此即可求得答案.【详解】(1),x2-2×4x+3=0,42-3=13>0,所以中点值为4,故答案为4;(2)由中点值的定义得:,,,将代入方程,得:,,.【点睛】本题考查了一元二次方程的根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论