海南省琼海市2022年九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
海南省琼海市2022年九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
海南省琼海市2022年九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
海南省琼海市2022年九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
海南省琼海市2022年九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知两圆半径分别为6.5cm和3cm,圆心距为3.5cm,则两圆的位置关系是()A.相交 B.外切 C.内切 D.内含2.如图所示的两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点 D.线段FC的中点3.函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.4.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条 B.2条 C.3条 D.4条5.若△ABC∽△DEF,相似比为2:3,则对应面积的比为()A.3:2 B.3:5 C.9:4 D.4:96.若关于的一元二次方程有两个不相等的实数根,则的取值范围()A.且 B. C. D.7.的绝对值为()A. B. C. D.8.如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为()A. B. C. D.9.下列图形中,是中心对称图形的是()A. B. C. D.10.已知,且α是锐角,则α的度数是()A.30° B.45° C.60° D.不确定11.《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.步 B.步 C.步 D.步12.在平面直角坐标系中,函数的图象经过变换后得到的图象,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向上平移2个单位 D.向下平移2个单位二、填空题(每题4分,共24分)13.如图,菱形ABCD和菱形ECGF的边长分别为2和3,点D在CE上,且∠A=120°,B,C,G三点在同一直线上,则BD与CF的位置关系是_____;△BDF的面积是_____.14.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm1.(结果保留π)15.若长方形的长和宽分别是关于x的方程的两个根,则长方形的周长是_______.16.如图,甲、乙两楼之间的距离为30米,从甲楼测得乙楼顶仰角为α=30°,观测乙楼的底部俯角为β=45°,乙楼的高h=_____米(结果保留整数≈1.7,≈1.4).17.如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是___.18.闹元宵吃汤圆是我国传统习俗,正月十五小明的妈妈煮了一碗汤圆,其中有4个花生味和2个芝麻味,小明从中任意吃一个,恰好吃到花生味汤圆的概率是_____.三、解答题(共78分)19.(8分)现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)20.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)21.(8分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.23.(10分)如图l,在中,,,于点,是线段上的点(与,不重合),,,连结,,,.(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点.①求证:;②当为等腰直角三角形,且时,请求出的值.24.(10分)如图1.正方形的边长为,点在上,且.如图2.将线段绕点逆时针旋转,设旋转角为,并以为边作正方形,连接试问随着线段的旋转,与有怎样的数量关系?说明理由;如图3,在的条件下,若点恰好落在线段上,求点走过的路径长(保留).25.(12分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.26.已知二次函数y=(x-1)2+n的部分点坐标如下表所示:(1)求该二次函数解析式;(2)完成上表,并在平面直角坐标系中画出函数图象

参考答案一、选择题(每题4分,共48分)1、C【解析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.【详解】∵两圆的半径分别为6.5cm和3cm,圆心距为3.5cm,且6.5﹣3=3.5,∴两圆的位置关系是内切.故选:C.【点睛】考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.2、D【分析】直接利用中心对称图形的性质得出答案.【详解】解:两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是:线段FC的中点.故选:D.【点睛】本题比较容易,考查识别图形的中心对称性.要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合.3、D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.4、C【分析】利用平行四边形的性质分割平行四边形即可.【详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:1.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.5、D【解析】根据相似三角形的面积比等于相似比的平方解答.【详解】解:∵△ABC∽△DEF,相似比为2:3,∴对应面积的比为()2=,故选:D.【点睛】本题考查相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.6、A【分析】根据题意可得k满足两个条件,一是此方程是一元二次方程,所以二次项系数k不等于0,二是方程有两个不相等的实数根,所以b2-4ac>0,根据这两点列式求解即可.【详解】解:根据题意得,k≠0,且(-6)2-36k>0,解得,且.故选:A.【点睛】本题考查一元二次方程的定义及利用一元二次方程根的情况确定字母系数的取值范围,根据需满足定义及根的情况列式求解是解答此题的重要思路.7、C【分析】根据绝对值的定义即可求解.【详解】的绝对值为故选C.【点睛】此题主要考查绝对值,解题的关键是熟知其定义.8、D【分析】根据题意列出相应的表格,得到所有等可能出现的情况数,进而找出满足题意的情况数,即可求出所求的概率.【详解】设印有中国国际进口博览会的标志为“”,印有进博会吉祥物“进宝”为,由题列表为所有的等可能的情况共有种,抽到的两卡片图案不相同的等可能情况共有种,,故选:D.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.9、D【分析】根据中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,逐一判断即可.【详解】解:A选项不是中心对称图形,故本选项不符合题意;B选项不是中心对称图形,故本选项不符合题意;C选项不是中心对称图形,故本选项不符合题意;D选项是中心对称图形,故本选项符合题意;故选D.【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.10、C【分析】根据sin60°=解答即可.【详解】解:∵α为锐角,sinα=,sin60°=,∴α=60°.故选:C.【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.11、A【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径,进而得出直径.【详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【点睛】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.12、A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【详解】,顶点坐标为,,顶点坐标为,所以函数的图象向左平移2个单位后得到的图象.故选:A【点睛】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键.二、填空题(每题4分,共24分)13、平行【分析】由菱形的性质易求∠DBC=∠FCG=30°,进而证明BD∥CF;设BF交CE于点H,根据菱形的对边平行,利用相似三角形对应边成比例列式求出CH,然后求出DH以及点B到CD的距离和点G到CE的距离,最后根据三角形的面积公式列式进行计算即可得解.【详解】解:∵四边形ABCD和四边形ECGF是菱形,∴AB∥CE,∵∠A=120°,∴∠ABC=∠ECG=60°,∴∠DBC=∠FCG=30°,∴BD∥CF;如图,设BF交CE于点H,∵CE∥GF,∴△BCH∽△BGF,∴=,即=,解得:CH=1.2,∴DH=CD﹣CH=2﹣1.2=0.8,∵∠A=120°,∠ABC=∠ECG=60°,∴点B到CD的距离为2×=,点G到CE的距离为3×=,∴阴影部分的面积=.故答案为:平行;.【点睛】本题考查了菱形的性质,相似三角形的判定和性质以及解直角三角形,求出DH的长度以及点B到CD的距离和点G到CE的距离是解题的关键.14、60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线.15、6【分析】设长方形的长为a,宽为b,根据根与系数的关系得a+b=3,即可得到结论.【详解】解:设长方形的长为a,宽为b,根据题意得,a+b=3,所以长方形的周长是2×(a+b)=6.故答案为:6.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=.16、1【分析】根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,结合图形计算,得到答案.【详解】解:在Rt△ACD中,tan∠CAD=,∴CD=AD•tan∠CAD=30×tan30°=10≈17,在Rt△ABD中,∠DAB=45°,∴BD=AD=30,∴h=CD+BD≈1,故答案为:1.【点睛】本题考查解直角三角形的应用,要注意利用已知线段和角通过三角关系求解.17、20°.【分析】连接OA、OB,由弧长公式的可求得∠AOB,然后再根据同弧所对的圆周角等于圆心角的一半可得∠ACB.【详解】解:连接OA、OB,由弧长公式的可求得∠AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得∠ACB=20°.故答案为:20°【点睛】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.18、【分析】用花生味汤圆的个数除以汤圆总数计算即可.【详解】解:∵一碗汤圆,其中有4个花生味和2个芝麻味,∴从中任意吃一个,恰好吃到花生味汤圆的概率是:.故答案为.【点睛】本题考查了概率公式的应用,如果一个事件共有n种可能,而且每一个事件发生的可能性相同,其中事件A出现m种可能,那么事件A的概率.三、解答题(共78分)19、(1)8m;(2)不可以,水管高度调整到0.7m,理由见解析.【分析】(1)根据题意设最远的抛物线形水柱的解析式为,然后将(0,0.64)代入解析式求得a的值,然后求解析式y=0时,x的值,从而求得半径;(2)利用圆与圆的位置关系结合正方形,作出三个等圆覆盖正方形的图形,然后利用勾股定理求得圆的半径,从而使问题得解.【详解】解:(1)由题意,设最远的抛物线形水柱的解析式为,将(0,0.64)代入解析式,得解得:∴最远的抛物线形水柱的解析式为当y=0时,解得:所以喷灌出的圆形区域的半径为8m;(2)如图,三个等圆覆盖正方形设圆的半径MN=NB=ME=DE=r,则AN=16-r,,MD=,AM=16-∴在Rt△AMN中,解得:(其中,舍去)∴设最远的抛物线形水柱的解析式为,将(8.5,0)代入解得:∴当x=0时,y=∴水管高度约为0.7m时,喷灌区域恰好可以完全覆盖该绿化带【点睛】本题考查待定系数法求二次函数解析式,根据题意设抛物线为顶点式是本题的解题关键.20、(20-5)千米.【解析】分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.详解:过点B作BD⊥AC,依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,设AD=x,∴tan∠ABD=即tan30°=,∴BD=x,在Rt△DCB中,∴tan∠CBD=即tan53°=,∴CD=∵CD+AD=AC,∴x+=13,解得,x=∴BD=12-,在Rt△BDC中,∴cos∠CBD=tan60°=,即:BC=(千米),故B、C两地的距离为(20-5)千米.点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.21、(1);(2),;(3)当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【分析】(1)根据题意找到平均每天销售量(箱)与销售价(元/箱)之间的函数关系式;(2)根据题意找到平均每天销售利润W(元)与销售价(元/箱)之间的函数关系式;(3)根据二次函数解析式求最值【详解】解:(1)由题意,得,化简,得.(2)由题意,得,.(3).∵,∴抛物线开口向下.当时,有最大值.又当时,随的增大而增大,∴当元时,的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得最大利润,最大利润为1125元.【点睛】本题考查了二次函数的实际应用和求最值,其中:利润=(售价-进价)×销量22、(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.23、(1)见解析;(2)①见解析;②【分析】(1)通过证明△EAB≌△FAB,即可得到BE=BF;

(2)①首先证明△AEB≌△AFC,由相似三角形的性质可得:∠EBA=∠FCA,进而可证明△AGC∽△KGB;②根据题意,可分类讨论求值即可.【详解】(1)∵AB=AC,AO⊥BC,

∴∠OAC=∠OAB=45°,

∴∠EAB=∠EAF-∠BAF=45°,

∴∠EAB=∠BAF=45°,

在△EAB和△FAB中,,∴△EAB≌△FAB(SAS),

∴BE=BF;

(2)①∵∠BAC=90°,∠EAF=90°,

∴∠EAB+∠BAF=∠BAF+∠FAC=90°,

∴∠EAB=∠FAC,

在△AEB和△AFC中,,∴△AEB≌△AFC(SAS),

∴∠EBA=∠FCA,

又∵∠KGB=∠AGC,

∴△AGC∽△KGB;

②当∠EBF=90°时,∵EF=BF,

∴∠FEB=∠EBF=90°(不符合题意),当∠BEF=90°,且EF=BF时,∴∠FEB=∠EBF=90°(不符合题意),当∠EFB=90°,且EF=BF时,如下图,∴∠FEB=∠FBE=45°,∵,,∴∠AFE=∠AEF=45°,∴∠AEB=∠AEF+∠FEB=45°+45°=90°,不妨设,则BF=EF=,BE=,在Rt△ABE中,∠AEB=90°,,BE,∴,∴,综上,.【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质、等腰直角三角形的性质,题目的综合性很强,最后一问要注意分类讨论,以防遗漏.24、(1);(2)【分析】(1)利用已知条件得出,从而可得出结论(2)连接,交于连接,可得出CG=AG,接着可证明是等边三角形.,再找出,最后利用弧长公式求解即可.【详解】解:.理由如下:由题意,可知.又,..如图,连接,交于连接.四边形是正方形,与互相垂直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论