2025年高考数学一轮复习(基础版)课时精讲第9章 §9.3 成对数据的统计分析(原卷版)_第1页
2025年高考数学一轮复习(基础版)课时精讲第9章 §9.3 成对数据的统计分析(原卷版)_第2页
2025年高考数学一轮复习(基础版)课时精讲第9章 §9.3 成对数据的统计分析(原卷版)_第3页
2025年高考数学一轮复习(基础版)课时精讲第9章 §9.3 成对数据的统计分析(原卷版)_第4页
2025年高考数学一轮复习(基础版)课时精讲第9章 §9.3 成对数据的统计分析(原卷版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页§9.3成对数据的统计分析课标要求1.了解样本相关系数的统计含义.2.了解一元线性回归模型和2×2列联表,会运用这些方法解决简单的实际问题.3.会利用统计软件进行数据分析.知识梳理1.变量的相关关系(1)相关关系:两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.(2)相关关系的分类:正相关和负相关.(3)线性相关:一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们就称这两个变量线性相关.2.样本相关系数(1)r=eq\f(\i\su(i=1,n,)xi-\x\to(x)yi-\x\to(y),\r(\i\su(i=1,n,)xi-\x\to(x)2)\r(\i\su(i=1,n,)yi-\x\to(y)2)).(2)当r>0时,称成对样本数据正相关;当r<0时,称成对样本数据负相关.(3)|r|≤1;当|r|越接近1时,成对样本数据的线性相关程度越强;当|r|越接近0时,成对样本数据的线性相关程度越弱.3.一元线性回归模型(1)我们将eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))称为Y关于x的经验回归方程,其中eq\b\lc\{\rc\(\a\vs4\al\co1(\o(b,\s\up6(^))=\f(\i\su(i=1,n,)xi-\x\to(x)yi-\x\to(y),\i\su(i=1,n,)xi-\x\to(x)2),,\o(a,\s\up6(^))=\x\to(y)-\o(b,\s\up6(^))\x\to(x).))(2)残差:观测值减去预测值称为残差.4.列联表与独立性检验(1)关于分类变量X和Y的抽样数据的2×2列联表:

XY合计Y=0Y=1X=0aba+bX=1cdc+d合计a+cb+dn=a+b+c+d(2)计算随机变量χ2=eq\f(nad-bc2,a+bc+da+cb+d),利用χ2的取值推断分类变量X和Y是否独立的方法称为χ2独立性检验.常用结论1.经验回归直线过点(eq\x\to(x),eq\x\to(y)).2.求eq\o(b,\s\up6(^))时,常用公式eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,n,x)iyi-n\x\to(x)\x\to(y),\i\su(i=1,n,x)\o\al(2,i)-n\x\to(x)2).3.回归分析和独立性检验都是基于成对样本观测数据进行估计或推断,得出的结论都可能犯错误.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)散点图是判断两个变量相关关系的一种重要方法和手段.()(2)经验回归直线eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))至少经过点(x1,y1),(x2,y2),…,(xn,yn)中的一个点.()(3)样本相关系数的绝对值越接近1,成对样本数据的线性相关程度越强.()(4)若事件X,Y关系越密切,则由观测数据计算得到的χ2的观测值越小.()2.(多选)下列有关回归分析的说法中正确的是()A.相关关系是一种确定性的关系B.经验回归直线就是散点图中经过样本数据点最多的那条直线C.当样本相关系数r>0时,两个变量正相关D.两个变量的线性相关性越弱,|r|越接近于03.已知变量x和y的统计数据如表:x678910y3.54566.5若由表中数据得到经验回归方程为eq\o(y,\s\up6(^))=0.8x+eq\o(a,\s\up6(^)),则当x=10时的残差为________(注:观测值减去预测值称为残差).4.某高校“统计初步”课程的教师随机调查了选该课的一些学生的情况,具体数据如表所示:性别主修专业合计非统计专业统计专业男131023女72027合计203050为了判断主修专业是否与性别有关系,根据表中的数据,得到χ2=eq\f(50×13×20-10×72,23×27×20×30)≈4.844,因为χ2>3.841,所以判定主修专业与性别有关系,那么这种判断出错的可能性________0.05(填“大于”或“小于”).附:α0.10.050.010.001xα2.7063.8416.63510.828题型一成对数据的相关性例1(1)调查某种群花萼长度和花瓣长度,所得数据如图所示,其中样本相关系数r=0.8245,则下列说法正确的是()A.花瓣长度和花萼长度没有相关性B.花瓣长度和花萼长度呈负相关C.花瓣长度和花萼长度呈正相关D.若从样本中抽取一部分,则这部分的样本相关系数一定是0.8245(2)(多选)某服装生产商为了解青少年的身高和体重的关系,在15岁的男生中随机抽测了10人的身高和体重,数据如表所示:编号12345678910身高/cm165168170172173174175177179182体重/kg55896165677075757880由表中数据制作成如图所示的散点图,由最小二乘法计算得到经验回归直线l1的方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))1x+eq\o(a,\s\up6(^))1,样本相关系数为r1,决定系数为Req\o\al(2,1);经过残差分析确定(168,89)为离群点(对应残差过大),把它去掉后,再用剩下的9对数据计算得到经验回归直线l2的方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))2x+eq\o(a,\s\up6(^))2,样本相关系数为r2,决定系数为Req\o\al(2,2).则以下结论中正确的有()A.eq\o(a,\s\up6(^))1>eq\o(a,\s\up6(^))2B.eq\o(b,\s\up6(^))1>eq\o(b,\s\up6(^))2C.r1<r2D.Req\o\al(2,1)>Req\o\al(2,2)跟踪训练1(1)已知两个变量x和y之间有线性相关关系,经调查得到样本数据如表所示:x34567y3.52.41.1-0.2-1.3根据表格中的数据求得经验回归方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),则下列说法中正确的是()A.eq\o(a,\s\up6(^))>0,eq\o(b,\s\up6(^))>0 B.eq\o(a,\s\up6(^))>0,eq\o(b,\s\up6(^))<0C.eq\o(a,\s\up6(^))<0,eq\o(b,\s\up6(^))>0 D.eq\o(a,\s\up6(^))<0,eq\o(b,\s\up6(^))<0(2)已知相关变量x和y的散点图如图所示,若用y=b1·ln(k1x)与y=k2x+b2拟合时的样本相关系数分别为r1,r2则比较r1,r2的大小结果为()A.r1>r2 B.r1=r2C.r1<r2 D.不确定题型二回归模型命题点1一元线性回归模型例2.2022年底以来,发放消费券在全国多个地区流行,此举助力消费复苏.记发放的消费券额度为x(百万元),带动的消费为y(百万元).下表为某省随机抽查的一些城市的数据:x33455668y1012131819212427(1)根据表中的数据,请用样本相关系数说明y与x有很强的线性相关关系,并求出y关于x的经验回归方程;(2)①若该省A城市在2023年8月份准备发放一轮额度为10百万元的消费券,利用(1)中求得的经验回归方程,预计可以带动多少消费?②当实际值与估计值的差的绝对值与估计值的比值不超过10%时,认为发放的该轮消费券助力消费复苏是理想的.若该省A城市8月份发放额度为10百万元的消费券后,经过一个月的统计,发现实际带动的消费为30百万元,请问发放的该轮消费券助力消费复苏是否理想?若不理想,请分析可能存在的原因.说明:对于经验回归方程的样本相关系数r,当|r|>0.75时,两个变量之间具有很强的线性相关关系.参考数据:eq\r(35)≈5.9.命题点2非线性回归模型例3秋天的第一杯奶茶是一个网络词汇,最早出自四川达州一位当地民警之口,民警用“秋天的第一杯奶茶”顺利救下一名女孩,由此而火爆全网.后来很多人开始在秋天里买一杯奶茶送给自己在意的人.某奶茶店主记录了入秋后前7天每天售出的奶茶数量(单位:杯)如下:日期第一天第二天第三天第四天第五天第六天第七天日期代码x1234567杯数y4152226293132(1)请根据以上数据,绘制散点图,并根据散点图判断,y=a+bx与y=c+dlnx哪一个更适宜作为y关于x的回归方程模型(给出判断即可,不必说明理由);(2)建立y关于x的经验回归方程(结果保留1位小数),并根据建立的经验回归方程,试预测要到哪一天售出的奶茶才能超过35杯?参考数据:eq\x\to(y)eq\x\to(u)eq\i\su(i=1,7,x)iyieq\i\su(i=1,7,u)iyieq\i\su(i=1,7,u)eq\o\al(2,i)e2.122.71.2759235.113.28.2其中ui=lnxi,eq\x\to(u)=eq\f(1,7)eq\i\su(i=1,7,u)i.参考公式:在经验回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))中,eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,n,x)iyi-n\x\to(x)\x\to(y),\i\su(i=1,n,x)\o\al(2,i)-n\x\to(x)2),eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x).跟踪训练2小李准备在某商场租一间商铺开服装店,为了解市场行情,在该商场调查了20家服装店,统计得到了它们的面积x(单位:m2)和日均客流量y(单位:百人)的数据(xi,yi)(i=1,2,…,20),并计算得eq\i\su(i=1,20,x)i=2400,eq\i\su(i=1,20,y)i=210,eq\i\su(i=1,20,)(xi-eq\x\to(x))2=42000,eq\i\su(i=1,20,)(xi-eq\x\to(x))(yi-eq\x\to(y))=6300.(1)求y关于x的经验回归方程;(2)已知服装店每天的经济效益W=keq\r(y)+mx(k>0,m>0),该商场现有60~150m2的商铺出租,根据(1)的结果进行预测,要使单位面积的经济效益Z最高,小李应该租多大面积的商铺?附:经验回归直线eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))的斜率和截距的最小二乘估计分别为eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,n,)xi-\x\to(x)yi-\x\to(y),\i\su(i=1,n,)xi-\x\to(x)2),eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x).题型三列联表与独立性检验例4一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)①求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表:<m≥m对照组试验组②根据①中的列联表,依据小概率值α=0.05的独立性检验,能否认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.α0.10.050.01xα2.7063.8416.635跟踪训练3由中央电视台综合频道(CCTV-1)和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课.每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到了青年观众的喜爱.为了了解观众对节目的喜爱程度,电视台随机调查了A,B两个地区的100名观众,得到如表所示的2×2列联表.非常喜欢喜欢合计A3015B合计已知在被调查的100名观众中随机抽取1名,该观众来自B地区且喜爱程度为“非常喜欢”的概率为0.35.(1)现从100名观众中根据喜爱程度用按比例分配的分层随机抽样的方法抽取20名进行问卷调查,则应抽取喜爱程度为“非常喜欢”的A,B地区的人数各是多少?(2)完成上述表格,依据小概率值α=0.05的独立性检验,能否认为观众的喜爱程度与所在地区有关?附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),n=a+b+c+d.α0.050.010.001xα3.8416.63510.828课时精练一、单项选择题1.为了解某大学的学生是否喜欢体育锻炼,用简单随机抽样方法在校园内调查了120位学生,得到如下2×2列联表:男女合计喜欢ab73不喜欢c25合计74则a-b-c等于()A.7B.8C.9D.102.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn互不相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=eq\f(1,3)x-5上,则这组样本数据的样本相关系数为()A.-eq\f(1,3)B.eq\f(1,3)C.-1D.13.根据分类变量x与y的成对样本数据,计算得到χ2=6.147.依据小概率值α=0.01的独立性检验(x0.01=6.635),结论为()A.变量x与y不独立B.变量x与y不独立,这个结论犯错误的概率不超过0.01C.变量x与y独立D.变量x与y独立,这个结论犯错误的概率不超过0.014.通过随机询问某中学110名中学生是否爱好跳绳,得到列联表如表所示:跳绳性别合计男女爱好402060不爱好203050合计6050110附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828则以下结论正确的是()A.根据小概率值α=0.001的独立性检验,我们认为爱好跳绳与性别无关B.根据小概率值α=0.001的独立性检验,我们认为爱好跳绳与性别无关,这个结论犯错误的概率不超过0.001C.根据小概率值α=0.01的独立性检验,我们认为爱好跳绳与性别无关D.在犯错误的概率不超过0.01的前提下,我们认为爱好跳绳与性别无关5.某市物价局派人对5个商场某商品同一天的销售量及其价格进行调查,得到该商品的售价x(元)和销售量y(件)之间的一组数据如表所示:价格x(元)9095100105110销售量y(件)1110865用最小二乘法求得y关于x的经验回归方程是eq\o(y,\s\up6(^))=-0.32x+eq\o(a,\s\up6(^)),样本相关系数r=-0.9923,则下列说法不正确的是()A.变量x与y负相关且相关性很强B.eq\o(a,\s\up6(^))=40C.当x=85时,y的估计值为15D.对应点(105,6)的残差为-0.46.设两个相关变量x和y分别满足下表:x12345y128816若相关变量x和y可拟合为非线性经验回归方程eq\o(y,\s\up6(^))=2bx+a,则当x=6时,y的估计值为()附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其经验回归直线eq\o(v,\s\up6(^))=eq\o(α,\s\up6(^))+eq\o(β,\s\up6(^))u的斜率和截距的最小二乘估计公式分别为eq\o(β,\s\up6(^))=eq\f(\i\su(i=1,n,u)ivi-n\x\to(u)\x\to(v),\i\su(i=1,n,u)\o\al(2,i)-n\x\to(u)2),eq\o(a,\s\up6(^))=eq\x\to(v)-eq\o(β,\s\up6(^))eq\x\to(u);1.155≈2.A.33B.37C.65D.73二、多项选择题7.为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对本校学生体育锻炼的经常性有影响,随机抽取了300名学生,对他们是否经常锻炼的情况进行了调查,调查发现经常锻炼人数是不经常锻炼人数的2倍,绘制其等高堆积条形图,如图所示,则()附:χ2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828A.参与调查的男生中经常锻炼的人数比不经常锻炼的人数多B.从参与调查的学生中任取一人,已知该学生为女生,则该学生经常锻炼的概率为eq\f(5,7)C.依据小概率值α=0.1的独立性检验,认为性别因素影响学生体育锻炼的经常性,该推断犯错误的概率不超过0.1D.假设调查人数为600人,经常锻炼人数与不经常锻炼人数的比例不变,统计得到的等高堆积条形图也不变,依据小概率值α=0.05的独立性检验,认为性别因素影响学生体育锻炼的经常性,该推断犯错误的概率不超过0.058.沃柑,因其口感甜柔、低酸爽口,且营养成分高,成为大家喜欢的水果之一,目前主要种植于我国广西、云南、四川、湖南等地.得益于物流的快速发展,沃柑的销量大幅增长,同时刺激了当地农民种植沃柑的热情.根据对广西某地的沃柑种植面积情况进行调查,得到统计表如表所示:年份t20182019202020212022年份代码x12345种植面积y/万亩814152028附:①样本相关系数r=eq\f(\i\su(i=1,n,)xi-\x\to(x)yi-\x\to(y),\r(\i\su(i=1,n,)xi-\x\to(x)2)\r(\i\su(i=1,n,)yi-\x\to(y)2));②在经验回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))中,eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,n,)xi-\x\to(x)yi-\x\to(y),\i\su(i=1,n,)xi-\x\to(x)2)=eq\f(\i\su(i=1,n,x)iyi-n\x\to(x)\x\to(y),\i\su(i=1,n,x)\o\al(2,i)-n\x\to(x)2),eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x);eq\r(2240)≈47.33.根据此表,下列结论正确的是()A.该地区这5年沃柑的种植面积的方差为212B.种植面积y与年份代码x的样本相关系数约为0.972(精确到0.001)C.y关于x的经验回归方程为eq\o(y,\s\up6(^))=4.6x+3.2D.预测该地区沃柑种植面积最早在2027年能突破40万

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论