版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知点A(,),B(1,),C(2,)是函数图象上的三点,则,,的大小关系是()A.<< B.<< C.<< D.无法确定2.下列方程中,是关于的一元二次方程的是()A. B. C. D.3.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.4.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.cm C.8cm D.cm5.如图,中,内切圆和边、、分别相切于点、、,若,,则的度数是()A. B. C. D.6.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.97.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=08.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<19.在平面直角坐标系中,点,,过第四象限内一动点作轴的垂线,垂足为,且,点、分别在线段和轴上运动,则的最小值是()A. B. C. D.10.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为()A. B. C. D.二、填空题(每小题3分,共24分)11.若关于x的一元二次方程x2+4x+k﹣1=0有实数根,则k的取值范围是____.12.方程(x﹣1)(x+2)=0的解是______.13.如图,在某一时刻,太阳光线与地面成的角,一只皮球在太阳光的照射下的投影长为,则皮球的直径是______.14.在一个不透明的袋子中只装有n个白球和4个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为_____.15.如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD的长是_____.16.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=°.17.如图,在中,,是边上的中线,,则的长是__________.18.已知线段a=4,b=9,则a,b的比例中项线段长等于________.三、解答题(共66分)19.(10分)如图1,我们已经学过:点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D.(1)证明点D是AB边上的黄金分割点;(2)证明直线CD是△ABC的黄金分割线.20.(6分)举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A、B、C、D中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.21.(6分)如图,在中,弦AB,CD相交于点E,=,点D在上,连结CO,并延长CO交线段AB于点F,连接OA,OB,且OA=2,∠OBA=30°(1)求证:∠OBA=∠OCD;(2)当AOF是直角三角形时,求EF的长;(3)是否存在点F,使得,若存在,请求出EF的长,若不存在,请说明理由.22.(8分)如图,点,在反比例函数的图象上,作轴于点.⑴求反比例函数的表达式;⑵若的面积为,求点的坐标.23.(8分)为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次随机调查的学生人数是______人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角等于______度;(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.24.(8分)如图(1),某数学活动小组经探究发现:在⊙O中,直径AB与弦CD相交于点P,此时PA·PB=PC·PD(1)如图(2),若AB与CD相交于圆外一点P,上面的结论是否成立?请说明理由.(2)如图(3),将PD绕点P逆时针旋转至与⊙O相切于点C,直接写出PA、PB、PC之间的数量关系.(3)如图(3),直接利用(2)的结论,求当PC=,PA=1时,阴影部分的面积.25.(10分)如图,在Rt△ABC中,∠C=90°,BC=8,tanB=,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.26.(10分)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径,高,求这个圆锥形漏斗的侧面积.
参考答案一、选择题(每小题3分,共30分)1、B【分析】直接根据反比例函数的性质排除选项即可.【详解】因为点A(,),B(1,),C(2,)是函数图象上的三点,,反比例函数的图像在二、四象限,所以在每一象限内y随x的的增大而增大,即;故选B.【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.2、C【解析】只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程.【详解】解:A选项,缺少a≠0条件,不是一元二次方程;B选项,分母上有未知数,是分式方程,不是一元二次方程;C选项,经整理后得x2+x=0,是关于x的一元二次方程;D选项,经整理后是一元一次方程,不是一元二次方程;故选择C.【点睛】本题考查了一元二次方程的定义.3、C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,
其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.4、B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==6cm,∴圆锥的高为=3cm故选B.考点:圆锥的计算.5、D【分析】连接IE,IF,先利用三角形内角和定理求出的度数,然后根据四边形内角和求出的度数,最后利用圆周角定理即可得出答案.【详解】连接IE,IF∵,∵I是内切圆圆心∴故选:D.【点睛】本题主要考查三角形内角和定理,四边形内角和,圆周角定理,掌握三角形内角和定理,四边形内角和,圆周角定理是解题的关键.6、A【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.【详解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,∴OE=OF=r,∴S四边形AEOF=r²,连接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四边形AEOF=r²=4,故选A.【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.7、C【详解】解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=61,化简整理得,x2﹣9x+8=1.故选C.8、A【分析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.9、B【分析】先求出直线AB的解析式,再根据已知条件求出点C的运动轨迹,由一次函数的图像及性质可知:点C的运动轨迹和直线AB平行,过点C作CE⊥AB交x轴于P,交AB于E,过点M(0,-3)作MN⊥AB于N根据垂线段最短和平行线之间的距离处处相等,可得此时CE即为的最小值,且MN=CE,然后利用锐角三角函数求MN即可求出CE.【详解】解:设直线AB的解析式为y=ax+b(a≠0)将点,代入解析式,得解得:∴直线AB的解析式为设C点坐标为(x,y)∴CD=x,OD=-y∵∴整理可得:,即点C的运动轨迹为直线的一部分由一次函数的性质可知:直线和直线平行,过点C作CE⊥AB交x轴于P,交AB于E,过点M(0,-3)作MN⊥AB于N根据垂线段最短和平行线之间的距离处处相等,可得此时CE即为的最小值,且MN=CE,如图所示在Rt△AOB中,AB=,sin∠BAO=在Rt△AMN中,AM=6,sin∠MAN=∴CE=MN=,即的最小值是.故选:B.【点睛】此题考查的是一次函数的图像及性质、动点问题和解直角三角形,掌握用待定系数法求一次函数的解析式、一次函数的图像及性质、垂线段最短和平行线之间的距离处处相等是解决此题的关键.10、C【解析】由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.二、填空题(每小题3分,共24分)11、k≤5【详解】解:由题意得,42-4×1×(k-1)≥0,解之得k≤5.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,一元二次方程有两个不相等的实数根;当△=0时,一元二次方程有两个相等的实数根;当△<0时,一元二次方程没有实数根.12、1、﹣1【分析】试题分析:根据几个式子的积为0,则至少有一个式子为0,即可求得方程的根.【详解】(x﹣1)(x+1)=0x-1=0或x+1=0解得x=1或-1.考点:解一元二次方程点评:本题属于基础应用题,只需学生熟练掌握解一元二次方程的方法,即可完成.13、15【分析】由图可得AC即为投影长,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,利用三角函数可得AB长.【详解】解:如图,过点A作于点B,由光线平行这一性质可得,且AB即为圆的半径,AC即为投影长.在中,,所以皮球的直径是15cm.故答案为:15.【点睛】本题考查了三角函数的应用,由图确定圆的投影长及直径是解题的关键.14、1.【分析】根据概率公式列方程计算即可.【详解】解:根据题意得,解得n=1,经检验:n=41是分式方程的解,故答案为:1.【点睛】题考查了概率公式的运用,理解用可能出现的结果数除以所有可能出现的结果数是解答本题的关键.15、4【解析】根据垂径定理以及勾股定理即可求答案.【详解】连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:4【点睛】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.16、70【解析】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°.又∵∠AOB=30°,∴∠A1OB=∠A1OA-∠AOB=70°.17、10【分析】根据直角三角形斜边中线等于斜边的一半直接求解即可.【详解】解:∵在中,,是边上的中线∴∴AB=2CD=10故答案为:10【点睛】本题考查直角三角形斜边中线等于斜边的一半,掌握直角三角形的性质是本题的解题关键.18、1【分析】根据比例中项的定义,列出比例式即可求解.【详解】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,
∴,即,解得,(不合题意,舍去)
故答案为:1.【点睛】此题考查了比例线段;理解比例中项的概念,注意线段不能是负数.三、解答题(共66分)19、(1)详见解析;(2)详见解析.【分析】(1)证明AD=CD=BC,证明△BCD∽△BCA,得到.则有,所以点D是AB边上的黄金分割点;(2)证明,直线CD是△ABC的黄金分割线;【详解】解:(1)点D是AB边上的黄金分割点.理由如下:AB=AC,∠A=,∠B=∠ACB=.CD是角平分线,∠ACD=∠BCD=,∠A=∠ACD,AD=CD.∠CDB=180-∠B-∠BCD=,∠CDB=∠B,BC=CD.BC=AD.在△BCD与△BCA中,∠B=∠B,∠BCD=∠A=,△BCD∽△BCA,点D是AB边上的黄金分割点.(2)直线CD是△ABC的黄金分割线.理由如下:设ABC中,AB边上的高为h,则,,,由(1)得点D是AB边上的黄金分割点,,直线CD是△ABC的黄金分割线【点睛】本题主要考查三角想相似及相似的性质,注意与题中黄金分割线定义相结合解题.20、(1);(2).【解析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】解答:(1)一辆车经过收费站时,选择A通道通过的概率是,故答案为.(2)列表如下:ABCDAAAABACADBBABBBCBDCCACBCCCDDDADBDCDD由表可知,共有16种等可能结果,其中选择不同通道通过的有12种结果,所以选择不同通道通过的概率为=.【点睛】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.21、(1)详见解析;(2)或;(3)【分析】(1)根据在“同圆或等圆中,同弧或等弧所对的圆周角相等”可得;(2)分两种情况讨论,当时,解直角三角形AFO可求得AF和OF的长,再解直角三角形EFC可得;当时,解直角三角形AFO可求得AF和OF的长,根据三角函数求解;(3)由边边边定理可证,再证,根据对应边成比例求解.【详解】解:(1)延长AO,CO分别交圆于点M,N为直径弧AC=弧BD弧CD=弧AB(2)①当时②当时,,,综上所述:或(3)连结,过点分别作于点,于点弧AC=弧BD弧CD=弧AB∴∴∵∴∵∴∴∵∴∵∴∵∴∵∴∴∴【点睛】本题考查圆周角定理,解直角三角形,相似三角形的判定与性质的综合应用,根据条件选择对应知识点且具有综合能力是解答此题的关键.22、(1);(2)【分析】(1)利用待定系数法即可解决问题;
(2)利用三角形的面积公式构建方程求出n,再利用待定系数法求出m的值即可;【详解】解:(1)∵点在反比例函数图象上,,∴反比例函数的解析式为:.(2)由题意:,,.【点睛】本题考查反比例函数的应用,解题的关键是熟练掌握待定系数法,学会构建方程解决问题,属于中考常考题型.23、(1)60;(2)见解析;(3)108;(4).【分析】(1)用A的人类除以A所占的百分比即可求得答案;(2)求出c的人数,补全统计图即可;(3)用360度乘以B所占的比例即可得;(4)画树状图得到所有等可能的情况数,找出符合条件的情况数,利用概率公式求解即可.【详解】(1)本次随机调查的学生人数人,故答案为60;(2)(人),补全条形统计图如图1所示:(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业间物联网技术应用与服务合同
- 2024年住宅小区出租合同
- 2024年仓储物流建设合同
- 2024临时项目外包合同
- 幼儿园道德意识培养方案
- xxx大桥人工挖孔桩专项施工方案
- 防洪墙工程预算与实施方案
- 利用BIM技术优化施工流程的方案
- 2024年双方财产切割协议书
- 体育场馆铁艺围栏设计方案
- 厦门市员工劳动合同
- 学生宿舍管理系统课件
- “课程思政”视角下的初中化学教学设计
- 影像设备巡检方案
- 稻虾连作可行性方案
- 《老年冠心病慢病管理指南(2023版)》解读
- 皮肤科护士对皮肤科器械和设备的使用与维护
- 教案程式与意蕴-中国传统绘画(人物画)《步辇图》教学设计-高中美术人美版(2019)美术鉴赏
- 交通事故案例分析与教训总结
- 《重症肺炎诊治进展》课件
- 《电话通信网》课件
评论
0/150
提交评论