重庆市渝中区名校2025届九年级数学第一学期期末调研试题含解析_第1页
重庆市渝中区名校2025届九年级数学第一学期期末调研试题含解析_第2页
重庆市渝中区名校2025届九年级数学第一学期期末调研试题含解析_第3页
重庆市渝中区名校2025届九年级数学第一学期期末调研试题含解析_第4页
重庆市渝中区名校2025届九年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市渝中区名校2025届九年级数学第一学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若与相似且对应中线之比为,则周长之比和面积比分别是()A., B., C., D.,2.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()A. B.5 C.8 D.43.的直径为,点与点的距离为,点的位置()A.在⊙O外 B.在⊙O上 C.在⊙O内 D.不能确定4.若关于x的一元二次方程kx2+2x–1=0有实数根,则实数k的取值范围是A.k≥–1 B.k>–1C.k≥–1且k≠0 D.k>–1且k≠05.一元二次方程中的常数项是()A.-5 B.5 C.-6 D.16.如图,四边形内接于,为延长线上一点,若,则的度数为()A. B. C. D.7.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B. C. D.8.如图,的直径,弦于.若,则的长是()A. B. C. D.9.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使=0成立?则正确的结论是()A.m=0时成立 B.m=2时成立 C.m=0或2时成立 D.不存在10.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球(

)A.32个 B.36个 C.40个 D.42个11.二次函数的图象的顶点在坐标轴上,则m的值()A.0 B.2 C. D.0或12.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2 B.48πcm2 C.60πcm2 D.80πcm2二、填空题(每题4分,共24分)13.已知关于x的方程x2+x+m=0的一个根是2,则m=_____,另一根为_____.14.如图是某几何体的三视图及相关数据,则该几何体的侧面积是_____.15.关于x的一元二次方程kx2﹣x+2=0有两个不相等的实数根,那么k的取值范围是_____.16.如图,在中,在边上,,是的中点,连接并延长交于,则______.17.已知圆的半径为,点在圆外,则长度的取值范围为___________.18.如图,在菱形ABCD中,E是BC边上的点,AE交BD于点F,若EC=2BE,则的值是.三、解答题(共78分)19.(8分)如图1,抛物线与x轴相交于点A、点B,与y轴交于点C(0,3),对称轴为直线x=1,交x轴于点D,顶点为点E.(1)求该抛物线的解析式;(2)连接AC,CE,AE,求△ACE的面积;(3)如图2,点F在y轴上,且OF=,点N是抛物线在第一象限内一动点,且在抛物线对称轴右侧,连接ON交对称轴于点G,连接GF,若GF平分∠OGE,求点N的坐标.20.(8分)用适当的方法解方程:.21.(8分)如图,在正方形ABCD中,点M、N分别在AB、BC边上,∠MDN=45°.(1)如图1,DN交AB的延长线于点F.求证:;(2)如图2,过点M作MP⊥DB于P,过N作NQ⊥BD于,若,求对角线BD的长;(3)如图3,若对角线AC交DM,DF分别于点T,E.判断△DTN的形状并说明理由.22.(10分)已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.23.(10分)如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD

(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.24.(10分)(1)计算:(2)化简:25.(12分)某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)每千克涨价x元,那么销售量表示为千克,涨价后每千克利润为元(用含x的代数式表示.)(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应定为多少?这时应进货多少千克?26.先化简,再求值:,其中x=1﹣.

参考答案一、选择题(每题4分,共48分)1、B【分析】直接根据相似三角形的性质进行解答即可.【详解】解:与相似,且对应中线之比为,其相似比为,与周长之比为,与面积比为,故选:B.【点睛】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比,相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比,相似三角形面积比是相似比的平方是解答此题的关键.2、A【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】把顺时针旋转的位置,四边形AECF的面积等于正方形ABCD的面积等于25,,,中,.故选A.【点睛】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.3、A【分析】由⊙O的直径为15cm,O点与P点的距离为8cm,根据点与圆心的距离与半径的大小关系,即可求得答案.【详解】∵⊙O的直径为15cm,∴⊙O的半径为7.5cm,∵O点与P点的距离为8cm,∴点P在⊙O外.故选A.【点睛】此题考查了点与圆的位置关系.注意点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.4、C【解析】解:∵一元二次方程kx2﹣2x﹣1=1有两个实数根,∴△=b2﹣4ac=4+4k≥1,且k≠1,解得:k≥﹣1且k≠1.故选C.点睛:此题考查了一元二次方程根的判别式,根的判别式的值大于1,方程有两个不相等的实数根;根的判别式的值等于1,方程有两个相等的实数根;根的判别式的值小于1,方程没有实数根.5、C【分析】将一元二次方程化成一般形式,即可得到常数项.【详解】解:∵∴∴常数项为-6故选C.【点睛】本题主要考查了一元二次方程的一般形式,准确的化出一元二次方程的一般形式是解决本题的关键.6、D【分析】根据圆内接四边形的对角互补,先求出∠ADC的度数,再求∠ADE的度数即可.【详解】解:四边形内接于-,.故选:.【点睛】本题考查的是内接四边形的对角互补,也就是内接四边形的外角等于和它不相邻的内对角.7、A【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:

绿

绿

﹣﹣﹣

(红,红)

(红,红)

(绿,红)

(绿,绿)

(红,红)

﹣﹣﹣

(红,红)

(绿,红)

(绿,红)

(红,红)

(红,红)

﹣﹣﹣

(绿,红)

(绿,红)

绿

(红,绿)

(红,绿)

(红,绿)

﹣﹣﹣

(绿,绿)

绿

(红,绿)

(红,绿)

(红,绿)

(绿,绿)

﹣﹣﹣

∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴,故选A.8、C【分析】先根据线段的比例、直径求出OC、OP的长,再利用勾股定理求出CP的长,然后根据垂径定理即可得.【详解】如图,连接OC直径在中,弦于故选:C.【点睛】本题考查了勾股定理、垂径定理等知识点,属于基础题型,掌握垂径定理是解题关键.9、A【解析】∵x1,x2是关于x的一元二次方程x2-bx+b-2=0的两个实数根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,则故满足条件的b的值为0故选A.10、A【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”【详解】设盒子里有白球x个,

根据得:解得:x=1.

经检验得x=1是方程的解.

答:盒中大约有白球1个.

故选;A.【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.11、D【解析】试题解析:当图象的顶点在x轴上时,∵二次函数的图象的顶点在x轴上,∴二次函数的解析式为:∴m=±2.当图象的顶点在y轴上时,m=0,故选D.12、C【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×1×6π×10=60π,所以圆锥的侧面积为60πcm1.故选:C.【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.二、填空题(每题4分,共24分)13、;.【解析】先把x=2代入方程,易求k,再把所求k的值代入方程,可得,再利用根与系数的关系,可求出方程的另一个解:解:把x=2代入方程,得.再把代入方程,得.设次方程的另一个根是a,则2a=-6,解得a=-3.考点:1.一元二次方程的解;2.根与系数的关系.14、15π.【解析】试题分析:由三视图可知这个几何体是母线长为5,高为4的圆锥,∴a=2=6,∴底面半径为3,∴侧面积为:π×5×3=15π.考点:1.三视图;2.圆锥的侧面积.15、且k≠1【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴解得:﹣≤k<且k≠1故答案为﹣≤k<且k≠1.点睛:本题考查了根的判别式、一元二次方程的定义以及二次根式有意义的条件,根据一元二次方程的定义、二次根式下非负以及根的判别式列出关于k的一元一次不等式组是解题的关键.16、【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OE=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BE:EC的比.【详解】解:如图,过O作OG∥BC,交AC于G,

∵O是BD的中点,

∴G是DC的中点.

又AD:DC=1:2,

∴AD=DG=GC,

∴AG:GC=2:1,AO:OE=2:1,

∴S△AOB:S△BOE=2

设S△BOE=S,S△AOB=2S,又BO=OD,

∴S△AOD=2S,S△ABD=4S,

∵AD:DC=1:2,

∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,

∴S△AEC=9S,S△ABE=3S,

∴==【点睛】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.17、【分析】设点到圆心的距离为d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】点P在圆外,则点到圆心的距离大于圆的半径,因而线段OP的长度的取值范围是OP>1.故答案为.【点睛】本题考查了对点与圆的位置关系的判断.熟记点与圆位置关系与数量关系的对应是解题关键,由位置关系可推得数量关系,同样由数量关系也可推得位置关系.18、【解析】EC=2BE,得,由于AD//BC,得三、解答题(共78分)19、(1)y=-x2+2x+3;(2)1;(3)点N的坐标为:(,).【分析】(1)由点C的坐标,求出c,再由对称轴为x=1,求出b,即可得出结论;(2)先求出点A,E坐标,进而求出直线AE与y轴的交点坐标,最后用三角形面积公式计算即可得出结论;(3)先利用角平分线定理求出FQ=1,进而利用勾股定理求出OQ=1=FQ,进而求出∠BON=45°,求出直线ON的解析式,最后联立抛物线解析式求解,即可得出结论.【详解】解:(1)∵抛物线y=-x2+bx+c与y轴交于点C(0,3),令x=0,则c=3,∵对称轴为直线x=1,∴,∴b=2,∴抛物线的解析式为y=-x2+2x+3;(2)如图1,AE与y轴的交点记作H,由(1)知,抛物线的解析式为y=-x2+2x+3,令y=0,则-x2+2x+3=0,∴x=-1或x=3,∴A(-1,0),当x=1时,y=-1+2+3=4,∴E(1,4),∴直线AE的解析式为y=2x+2,∴H(0,2),∴CH=3-2=1,∴S△ACE=CH•|xE-xA|=×1×2=1;(3)如图2,过点F作FP⊥DE于P,则FP=1,过点F作FQ⊥ON于Q,∵GF平分∠OGE,∴FQ=FP=1,在Rt△FQO中,OF=,根据勾股定理得,OQ=,∴OQ=FQ,∴∠FOQ=45°,∴∠BON=90°-45°=45°,过点Q作QM⊥OB于M,OM=QM∴ON的解析式为y=x①,∵点N在抛物线y=-x2+2x+3②上,联立①②,则,解得:或(由于点N在对称轴x=1右侧,所以舍去),∴点N的坐标为:(,).【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形面积的求法,角平分线定理,勾股定理,直线与抛物线的交点坐标的求法,求出直线ON的解析式是解本题的关键.20、,【分析】根据因式分解法即可求解.【详解】解:+2x-3=0(x+3)(x-1)=0x+3=0或x-1=0,.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法解方程.21、(1)证明见解析;(2);(3)是等腰直角三角形,理由见解析【分析】(1)连接BD,根据正方形的性质可证出,得到,即可得到结果;(2)根据正方形ABCD,可得到,,可推出,得到,于是推出,得到,进而得出,代入已知条件即可;(3)由已知条件证出,可得,再根据,得到,所以,代入条件可求得结果.【详解】解:(1)连接BD∵四边形ABCD是正方形∴∴又∵∴又∵∴∴∴(2)∵正方形ABCD∴,又∵∴又∵,∴∴∴∴∴又∵∴∴故答案为:(3)是等腰直角三角形,理由如下:由,,∴又∵∴∴又∵∴∴是等腰直角三角形【点睛】本题主要考查了正方形的综合应用,结合相似三角形的性质应用进行题目解答,找到每个量之间的关系关键.22、(1)b=2,c=3,y=-x+2x+3;(2)【分析】(1)把抛物线上的两点代入解析式,解方程组可求b、c的值;(2)令y=1,求抛物线与x轴的两交点坐标,观察图象,求y>1时,x的取值范围.【详解】解:(1)将点(-1,1),(1,3)代入y=-x2+bx+c中,得解得.∴(2)当y=1时,解方程,得,又∵抛物线开口向下,∴当-1<x<3时,y>1.【点睛】本题考查了待定系数法求抛物线解析式,根据抛物线与x轴的交点,开口方向,可求y>1时,自变量x的取值范围.23、(1)证明见解析;(2)证明见解析;(3)EF=【解析】分析:(1)由翻折知△ABC≌△ABD,得∠ADB=∠C=90°,据此即可得;(2)由AB=AD知AB2=AD•AE,即,据此可得△ABD∽△AEB,即可得出∠ABE=∠ADB=90°,从而得证;(3)由知DE=1、BE=,证△FBE∽△FAB得,据此知FB=2FE,在Rt△ACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得.详解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,即,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,∴AB=,∵,∴,解得:DE=1,∴BE=,∵四边形ACBD内接于⊙O,∴∠FBD=∠FAC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论