2025届四川省成都市都江堰市九上数学期末质量检测试题含解析_第1页
2025届四川省成都市都江堰市九上数学期末质量检测试题含解析_第2页
2025届四川省成都市都江堰市九上数学期末质量检测试题含解析_第3页
2025届四川省成都市都江堰市九上数学期末质量检测试题含解析_第4页
2025届四川省成都市都江堰市九上数学期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省成都市都江堰市九上数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为().A.4 B.6 C.8 D.122.已知关于x的方程x2-kx-6=0的一个根为x=-3,则实数k的值为()A.1 B.-1 C.2 D.-23.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°4.判断一元二次方程是否有实数解,计算的值是()A. B. C. D.5.反比例函数,下列说法不正确的是()A.图象经过点(1,-3) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大6.抛物线y=2(x﹣1)2+3的对称轴为()A.直线x=1B.直线y=1C.直线y=﹣1D.直线x=﹣17.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个 B.8个 C.9个 D.12个8.为了估计抛掷某枚啤酒瓶盖落地后凸面向下的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为次,凸面向下的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为()A. B. C. D.9.已知是方程x2﹣2x+c=0的一个根,则c的值是()A.﹣3 B.3 C. D.210.已知,是抛物线上两点,则正数()A.2 B.4 C.8 D.1611.如图,中,点,分别是边,上的点,,点是边上的一点,连接交线段于点,且,,,则S四边形BCED()A. B. C. D.12.若方程x2+3x+c=0有实数根,则c的取值范围是()A.c≤ B.c≤ C.c≥ D.c≥二、填空题(每题4分,共24分)13.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为__________m.14.如图三角形ABC是圆O的内接正三角形,弦EF经过BC边的中点D,且EF平行AB,若AB等于6,则EF等于________.15.若两个相似三角形的周长比是,则对应中线的比是________.16.如图,△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,CD=6,则AB=_______.17.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.18.如图,一个半径为,面积为的扇形纸片,若添加一个半径为的圆形纸片,使得两张纸片恰好能组合成一个圆锥体,则添加的圆形纸片的半径为____.三、解答题(共78分)19.(8分)如图,在中,直径垂直于弦,垂足为,连结,将沿翻转得到,直线与直线相交于点.(1)求证:是的切线;(2)若为的中点,,求的半径长;(3)①求证:;②若的面积为,,求的长.20.(8分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,,求OM的长.21.(8分)在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?22.(10分)某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量与时间第天之间的函数关系式为(,为整数),销售单价(元/)与时间第天之间满足一次函数关系如下表:时间第天123…80销售单价(元/)49.54948.5…10(1)写出销售单价(元/)与时间第天之间的函数关系式;(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?23.(10分)为测量某特种车辆的性能,研究制定了行驶指数,而的大小与平均速度和行驶路程有关(不考虑其他因素),由两部分的和组成,一部分与成正比,另一部分与成正比.在实验中得到了表格中的数据:速度路程指数(1)用含和的式子表示;(2)当行驶指数为,而行驶路程为时,求平均速度的值;(3)当行驶路程为时,若行驶指数值最大,求平均速度的值.24.(10分)已知:如图,将△ADE绕点A顺时针旋转得到△ABC,点E对应点C恰在D的延长线上,若BC∥AE.求证:△ABD为等边三角形.25.(12分)为弘扬遵义红色文化,传承红色文化精神,某校准备组织学生开展研学活动.经了解,有A.遵义会议会址、B.苟坝会议会址、C.娄山关红军战斗遗址、D.四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.(1)统计图中______,______;(2)若该校有1500名学生,请估计选择基地的学生人数;(3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.26.小明本学期4次数学考试成绩如下表如示:成绩类别第一次月考第二次月考期中期末成绩分138142140138(1)小明4次考试成绩的中位数为__________分,众数为______________分;(2)学校规定:两次月考的平均成绩作为平时成绩,求小明本学期的平时成绩;(3)如果本学期的总评成绩按照平时成绩占20%、期中成绩占30%、期末成绩占50%计算,那么小明本学期的数学总评成绩是多少分?

参考答案一、选择题(每题4分,共48分)1、A【解析】∵圆心角∠AOC与圆周角∠B所对的弧都为,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定义).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所对的边是斜边的一半).∴⊙O的半径4.故选A.2、B【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【详解】解:因为x=-3是原方程的根,所以将x=-3代入原方程,即(-3)2+3k−6=0成立,解得k=-1.故选:B.【点睛】本题考查的是一元二次方程的根即方程的解的定义,解题的关键是把方程的解代入进行求解.3、C【详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.

显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.4、B【解析】首先将一元二次方程化为一般式,然后直接计算判别式即可.【详解】一元二次方程可化为:∴故答案为B.【点睛】此题主要考查一元二次方程的根的判别式的求解,熟练掌握,即可解题.5、D【解析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点的坐标满足反比例函数,故A是正确的;由,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数关于对称是正确的,故C也是正确的,由反比例函数的性质,,在每个象限内,随的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.【点睛】考查反比例函数的性质,当时,在每个象限内随的增大而增大的性质、反比例函数的图象是轴对称图象,和是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.6、A【解析】解:∵y=2(x﹣1)2+3,∴该抛物线的对称轴是直线x=1.故选A.7、C【分析】设有x个队参赛,根据题意列出方程即可求出答案即可解决.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.【点睛】本题考查了一元二次方程的应用,解决本题的关键是正确理解题意,找到题意中蕴含的等量关系.8、D【分析】由向上和向下的次数可求出向下的频率,根据大量重复试验下,随机事件发生的频率可以作为概率的估计值即可得答案.【详解】∵凸面向上的次数为420次,凸面向下的次数为580次,∴凸面向下的频率为580÷(420+580)=0.58,∵大量重复试验下,随机事件发生的频率可以作为概率的估计值,∴估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为0.58,故选:D.【点睛】本题考查利用频率估计概率,熟练掌握大量重复试验下,随机事件发生的频率可以作为概率的估计值是解题关键.9、B【分析】把x=代入方程得到关于c的方程,然后解方程即可.【详解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故选:B.【点睛】本题考查了一元二次方程根的性质,解答关键是将方程的根代入原方程求出字母系数.10、C【分析】根据二次函数的对称性可得,代入二次函数解析式即可求解.【详解】解:∵,是抛物线上两点,∴,∴且n为正数,解得,故选:C.【点睛】本题考查二次函数的性质,掌握二次函数的性质是解题的关键.11、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形对应成比例可得,得到HC=5,再根据相似三角形的面积比等于相似比的平方可得,S△ABC=40.5,再减去△ADE的面积即可得到四边形BCED的面积.【详解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四边形BCED=S△ABC-S△ADE=40.5-18=22.5故答案选:B.【点睛】本题考查相似三角形的性质和判定.12、A【分析】由方程x2+3x+c=0有实数解,根据根的判别式的意义得到△≥0,即32-4×1×c≥0,解不等式即可得到c的取值范围.【详解】解:∵方程x2+3x+c=0有实数根,∴△=b2﹣4ac=32﹣4×1×c≥0,解得:c≤,故选:A.【点睛】本题考查了根的判别式,需要熟记:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根.二、填空题(每题4分,共24分)13、25m【分析】根据垂径定理可得△BOD为直角三角形,且BD=AB,之后利用勾股定理进一步求解即可.【详解】∵点C是的中点,∴OC平分AB,∴∠BOD=90°,BD=AB=20m,设OB=x,则:OD=(x-10)m,∴,解得:,∴OB=25m,故答案为:25m.【点睛】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.14、【分析】设AC与EF交于点G,由于EF∥AB,且D是BC中点,易得DG是△ABC的中位线,即DG=3;易知△CDG是等腰三角形,可过C作AB的垂线,交EF于M,交AB于N;然后证DE=FG,根据相交弦定理得BD•DC=DE•DF,而BD、DC的长易知,DF=3+DE,由此可得到关于DE的方程,即可求得DE的长,EF=DF+DE=3+2DE,即可求得EF的长;【详解】解:如图,过C作CN⊥AB于N,交EF于M,则CM⊥EF,根据圆和等边三角形的性质知:CN必过点O,∵EF∥AB,D是BC的中点,∴DG是△ABC的中位线,即DG=AB=3;∵∠ACB=60°,BD=DC=BC,AG=GC=AC,且BC=AC,∴△CGD是等边三角形,∵CM⊥DG,∴DM=MG;∵OM⊥EF,由垂径定理得:EM=MF,故DE=GF,∵弦BC、EF相交于点D,∴BD×DC=DE×DF,即DE×(DE+3)=3×3;解得DE=或(舍去);∴EF=3+2×=;【点睛】本题主要考查了相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理,掌握相交弦定理,等边三角形的性质,三角形中位线定理,垂径定理是解题的关键.15、4:9【分析】相似三角形的面积之比等于相似比的平方.【详解】解:两个相似三角形的周长比是,∴两个相似三角形的相似比是,∴两个相似三角形对应中线的比是,故答案为.16、1【分析】根据题意由已知得△BDC为等腰直角三角形,所以CD=BC=6,又因为已知∠A的正弦值,即可求出AB的长.【详解】解:∵∠C=90°,∠BDC=45°,∴BC=CD=6,又∵sinA==,∴AB=6÷=1.故答案为:1.【点睛】本题考查解直角三角形问题,直角三角形知识的牢固掌握和三角函数的灵活运用.17、【分析】连接CE,过点B作BH⊥CD交CD的延长线于点H,可证四边形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分线的性质可得BE=CE,CD=BD,可证CE=BE=CD=DB,通过证明Rt△ACE≌Rt△HBD,可得AE=DH,通过证明△ACD∽△DHB,可得AC2=AE•BE,由勾股定理可得BE2﹣AE2=AC2,可得关于BE,AE的方程,即可求解.【详解】解:连接CE,过点B作BH⊥CD交CD的延长线于点H,∵AC是半圆的切线∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四边形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直径,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE•BE,∴BE2﹣AE2=AE•BE,∴BE=AE,∴故答案为:.【点睛】本题考察垂直平分线的性质、矩形的性质和相似三角形,解题关键是连接CE,过点B作BH⊥CD交CD的延长线于点H,证明出四边形ACHB是矩形.18、1【分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷1,得到圆锥的弧长=1扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷1π求解.【详解】解:∵圆锥的弧长=1×11π÷6=4π,

∴圆锥的底面半径=4π÷1π=1cm,

故答案为1.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.三、解答题(共78分)19、(1)见解析;(2)的半径为2;(3)①见解析;②.【分析】(1)连接OC,由OA=OC得,根据折叠的性质得∠1=∠3,∠F=∠AEC=90°,则∠2=∠3,于是可判断OC∥AF,根据平行线的性质得,然后根据切线的性质得直线FC与⊙O相切;

(2)首先证明△OBC是等边三角形,在Rt△OCE中,根据OC2=OE2+CE2,构建方程即可解决问题;

(3)①根据等角的余角相等证明即可;

②利用圆的面积公式求出OB,由△GCB∽△GAC,可得,由此构建方程即可解决问题;【详解】解:(1)证明:连结,则,,,,又,即直线垂直于半径,且过的外端点,是的切线;(2)点是斜边的中点,,是等边三角形,且是的高,在中,,即解得,即的半径为2;(3)①∵OC=OB,∴,,,.②,,由①知:,,即,,解得:.【点睛】本题属于圆综合题,考查了切线的判定,解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想思考问题,属于中考压轴题.20、(1)证明见解析;(2)【分析】(1)连接OE,如图,通过证明∠GEA+∠OEA=90°得到OE⊥GE,然后根据切线的判定定理得到EG是⊙O的切线;(2)连接OC,如图,设⊙O的半径为r,则OC=r,OH=r-2,利用勾股定理得到,解得r=3,然后证明Rt△OEM∽Rt△CHA,再利用相似比计算OM的长.【详解】(1)证明:连接OE,如图,

∵GE=GF,∴∠GEF=∠GFE,而∠GFE=∠AFH,∴∠GEF=∠AFH,∵AB⊥CD,∴∠OAF+∠AFH=90°,∴∠GEA+∠OAF=90°,∵OA=OE,∴∠OEA=∠OAF,∴∠GEA+∠OEA=90°,即∠GEO=90°,∴OE⊥GE,∴EG是⊙O的切线;(2)解:连接OC,如图,设⊙O的半径为r,则OC=r,OH=r-2,在Rt△OCH中,,解得r=3,在Rt△ACH中,AC=,∵AC∥GE,∴∠M=∠CAH,∴Rt△OEM∽Rt△CHA,∴,即,解得:OM=.【点睛】本题考查了切线的判断与性质:圆的切线垂直于经过切点的半径.经过半径的外端且垂直于这条半径的直线是圆的切线.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径.也考查了勾股定理.21、(1)50;(2)8.26,8;(3)400【分析】(1)根据总数等于各组数量之和列式计算;(2)根据样本平均数和中位数的定义列式计算;(3)利用样本估计总体的思想解决问题.【详解】解:(1)本次调查一共抽取了4+10+15+11+10=50名;(2)调查获取的样本数据的平均数为分;4+10+15=29<26,所以中位数为分;(3)根据题意得2000名居民中得分为10分的约有名,∴社区工作人员需准备400份一等奖奖品.【点睛】本题考查条形统计图,读懂图形,从图形中得到必要的信息是解答此题的关键,条形统计图的特点是能清楚的反映出各个项目的数据.22、(1);(2)第19天的日销售利润最大,最大利润是4761元.【分析】(1)设销售单价p(元/kg)与时间第t天之间的函数关系式为:p=kt+b,将(1,49.5),(2,49)代入,再解方程组即可得到结论;

(2)设每天获得的利润为w元,由题意根据利润=销售额-成本,可得到w=-(t-19)2+4761,根据二次函数的性质即可得到结论.【详解】(1)设销售单价(元)与时间第天之间的函数关系式为:,将代入,得,解得.∴销售单价(元)与时间第天之间的函数关系式为.(2)设每天获得的利润为元.由题意,得.∵,∴有最大值.当时,最大,此时,(元)答:第19天的日销售利润最大,最大利润是4761元.【点睛】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.23、(1);(2)50km/h;(3)90km/h.【分析】(1)设K=mv2+nsv,则P=mv2+nsv+1000,利用待定系数法求解可得;

(2)将P=500代入(1)中解析式,解方程可得;

(3)将s=180代入解析式后,配方成顶点式可得最值情况.【详解】解:(1)设K=mv2+nsv,则P=mv2+nsv+1000,由题意得:,整理得:,解得:,则P=﹣v2+sv+1000;(2)根据题意得﹣v2+40v+1000=500,整理得:v2﹣40v﹣500=0,解得:v=﹣10(舍)或v=50,答:平均速度为50km/h;(3)当s=180时,P=﹣v2+180v+1000=﹣(v﹣90)2+9100,∴当v=90时,P最大=9100,答:若行驶指数值最大,平均速度的值为90km/h.【点睛】本题主要考查待定系数法求函数解析式、解二元一次方程组、解一元二次方程的能力及二次函数的性质,熟练掌握待定系数法求得函数解析式是解题的关键.24、证明见解析.【分析】由旋转的性质可得,,可得,由平行线的性质可得,可得,则可求,可得结论.【详解】解:由旋转知:△ADE≌△ABC,∴∠ACB=∠E,AC=AE,∴∠E=∠ACE,又BC∥AE,∴∠BCE+∠E=180°,即∠ACB+∠ACE+∠E=180°,∴∠E=60

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论