版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嵊州市蒋镇学校2025届九年级数学第一学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()
x
…
﹣1
0
1
2
…
y
…
﹣5
1
3
1
…A.抛物线开口向上
B.抛物线与y轴交于负半轴C.当x=3时,y<0
D.方程ax2+bx+c=0有两个相等实数根2.已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是A. B. C. D.3.关于抛物线y=x2+6x﹣8,下列选项结论正确的是()A.开口向下 B.抛物线过点(0,8)C.抛物线与x轴有两个交点 D.对称轴是直线x=34.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2).以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),则端点C的坐标为()A.(3,1) B.(4,1) C.(3,3) D.(3,4)5.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1或2 B.-1或1C.1或2 D.-1或2或16.下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.在只装了红色卡片的袋子里,摸出一张白色卡片C.投掷一枚正六面体骰子,朝上一面的点数小于7D.在一副扑克牌中抽出一张,抽出的牌是黑桃67.如图,二次函数的图象与轴交于点(4,0),若关于的方程在的范围内有实根,则的取值范围是()A. B.C. D.8.下列事件是随机事件的是()A.打开电视,正在播放新闻 B.氢气在氧气中燃烧生成水C.离离原上草,一岁一枯荣 D.钝角三角形的内角和大于180°9.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5 B.(x+2)2=9 C.(x﹣2)2=9 D.(x﹣2)2=2110.如图,△ABC中,AB=25,BC=7,CA=1.则sinA的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知关于x的一元二次方程有两个实数根,,若,满足,则m的值为_____________12.已知p,q都是正整数,方程7x2﹣px+2009q=0的两个根都是质数,则p+q=_____.13.若,则__________.14.在Rt△ABC中,∠C=90°,tanA=,△ABC的周长为18,则S△ABC=____.15.一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是__________.16.在Rt△ABC中,∠C=90°,AC=6,BC=8(如图),点D是边AB上一点,把△ABC绕着点D旋转90°得到,边与边AB相交于点E,如果AD=BE,那么AD长为____.17.在一个不透明的袋子中有5个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球不放回,混合均匀后再摸出一个球,两次都摸到红球的概率是________.18.把抛物线的图像向右平移个单位,再向下平移个单位,所得图像的解析式为,则的值为___________.三、解答题(共66分)19.(10分)解方程:;20.(6分)根据要求画出下列立体图形的视图.21.(6分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)22.(8分)如图,抛物线与轴交于、两点,与轴交于点.(1)求点,点和点的坐标;(2)在抛物线的对称轴上有一动点,求的值最小时的点的坐标;(3)若点是直线下方抛物线上一动点,运动到何处时四边形面积最大,最大值面积是多少?23.(8分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当时,;②当时,(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.24.(8分)如图,中,,以为直径作半圆交于点,点为的中点,连接.(1)求证:是半圆的切线;(2)若,,求的长.25.(10分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:=OE•OF.26.(10分)如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.
参考答案一、选择题(每小题3分,共30分)1、C【解析】根据表格的数据,描点连线得,根据函数图像,得:抛物线开口向下;抛物线与y轴交于正半轴;当x=3时,y<0;方程有两个相等实数根.故选C.2、D【详解】根据题意有:xy=24;且根据x,y实际意义x、y应大于0,其图象在第一象限.故选D.3、C【分析】根据△的符号,可判断图像与x轴的交点情况,根据二次项系数可判断开口方向,令函数式中x=0,可求图像与y轴的交点坐标,利用配方法可求图像的顶点坐标.【详解】解:A、抛物线y=x2+6x﹣8中a=1>0,则抛物线开口方向向上,故本选项不符合题意.B、x=0时,y=﹣8,抛物线与y轴交点坐标为(0,﹣8),故本选项不符合题意.C、△=62﹣4×1×(-8)>0,抛物线与x轴有两个交点,本选项符合题意.D、抛物线y=x2+6x﹣8=(x+3)2﹣17,则该抛物线的对称轴是直线x=﹣3,故本选项不符合题意.故选:C.【点睛】本题主要考查的是二次函数的开口,与y轴x轴的交点,对称轴等基本性质,掌握二次函数的基本性质是解题的关键.4、C【分析】利用位似图形的性质,结合两图形的位似比,即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),∴在第一象限内将线段AB缩小为原来的后得到线段CD,∴点C的横坐标和纵坐标都变为A点的一半,∴点C的坐标为:(3,3).故选:C.【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.5、D【解析】当该函数是一次函数时,与x轴必有一个交点,此时a-1=0,即a=1.当该函数是二次函数时,由图象与x轴只有一个交点可知Δ=(-4)2-4(a-1)×2a=0,解得a1=-1,a2=2.综上所述,a=1或-1或2.故选D.6、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.画一个三角形,其内角和是180°,是必然事件,故不符合题意;B.在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件,故不符合题意;C.投掷一枚正六面体骰子,朝上一面的点数小于7,是必然事件,故不符合题意;D.在一副扑克牌中抽出一张,抽出的牌是黑桃6,是随机事件,故符合题意;故选:D【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【分析】将点(1,0)代入函数解析式求出b=1,即要使在的范围内有实根,即要使在的范围内有实根,即要使二次函数与一次函数y=t在的范围内有交点,求出时,二次函数值的范围,写出t的范围即可.【详解】将x=1代入函数解析式可得:0=-16+1b,解得b=1,二次函数解析式为:,要使在的范围内有实根,即要使二次函数与一次函数y=t在的范围内有交点,二次函数对称轴为x=2,且当x=2时,函数最大值y=1,x=1或x=3时,y=3,3<y≤1.3<t≤1.故选:B.【点睛】本题主要考查二次函数与一元二次方程之间的关系,数形结合,将方程有实根的问题转化为函数的交点问题是解题关键.8、A【分析】根据随机事件的意义,事件发生的可能性大小判断即可.【详解】解:A、打开电视,正在播放新闻,是随机事件;B、氢气在氧气中燃烧生成水,是必然事件;C、离离原上草,一岁一枯荣,是必然事件;D、钝角三角形的内角和大于180°,是不可能事件;故选:A.【点睛】本题考查可随机事件的意义,正确理解随机事件的意义是解决本题的关键.9、B【分析】两边配上一次项系数一半的平方可得.【详解】∵x2+4x=5,∴x2+4x+4=5+4,即(x+2)2=9,故选B.【点睛】本题主要考查解一元二次方程的基本技能,熟练掌握解一元二次方程的常用方法和根据不同方程灵活选择方法是解题的关键.10、A【分析】根据勾股定理逆定理推出∠C=90°,再根据进行计算即可;【详解】解:∵AB=25,BC=7,CA=1,又∵,∴,∴△ABC是直角三角形,∠C=90°,∴=;故选A.【点睛】本题主要考查了锐角三角函数的定义,勾股定理逆定理,掌握锐角三角函数的定义,勾股定理逆定理是解题的关键.二、填空题(每小题3分,共24分)11、4【解析】由韦达定理得出x1+x2=6,x1·x2=m+4,将已知式子3x1=|x2|+2去绝对值,对x2进行分类讨论,列方程组求出x1、x2的值,即可求出m的值.【详解】由韦达定理可得x1+x2=6,x1·x2=m+4,①当x2≥0时,3x1=x2+2,,解得,∴m=4;②当x2<0时,3x1=2﹣x2,,解得,不合题意,舍去.∴m=4.故答案为4.【点睛】本题主要考查一元二次方程根与系数的关系,其中对x2分类讨论去绝对值是解题的关键.12、337【分析】利用一元二次方程根与系数的关系,得出有关p,q的式子,再利用两个根都是质数,可分析得出结果.【详解】解:x1+x2=,x1x2==287q=7×41×q,x1和x2都是质数,则只有x1和x2是7和41,而q=1,所以7+41=,p=336,所以p+q=337,故答案为:337.【点睛】此题考查了一元二次方程根与系数的关系以及质数的概念,题目比较典型.13、【分析】根据等式的基本性质,将等式的两边同时除以,即可得出结论.【详解】解:将等式的两边同时除以,得故答案为:.【点睛】此题考查的是将等式变形,掌握等式的基本性质是解决此题的关键.14、【解析】根据正切函数是对边比邻边,可得a、b的值,根据勾股定理,可得c根据周长公式,可得x的值,根据三角形的面积公式,可得答案.【详解】由在Rt△ABC中,∠C=90°,tanA=,得a=5x,b=12x.由勾股定理,得c==13x.由三角形的周长,得5x+12x+13x=18,解得x=,a=3,b=.S△ABC=ab=×3×=.故答案为:.【点睛】本题考查了解直角三角形,利用正切函数表示出a=5x,b=12x是解题关键.15、【分析】根据三视图可得出该几何体为圆锥,圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形.),用字母表示就是S=πr²+πrl(其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离).【详解】解:由题意可知,该几何体是圆锥,其中底面半径为2,母线长为6,∴故答案为:.【点睛】本题考查的知识点是几何体的三视图以及圆锥的表面积公式,熟记圆锥的面积公式是解此题的关键.16、.【解析】在Rt△ABC中,
由旋转的性质,设AD=A′D=BE=x,则DE=2x-10,
∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,
∴∠A′=∠A,∠A′DE=∠C=90°,
∴∽△BCA,∴,∵=10-x,∴,∴x=,故答案为.17、【分析】列举出所有情况,看两次都摸到红球的情况占总情况的多少即可.【详解】画树状图图如下:∴一共有20种情况,有6种情况两次都摸到红球,∴两次都摸到红球的概率是.故答案为:.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18、【分析】根据抛物线的平移规律:左加右减,上加下减,得出平移后的抛物线解析式,化为一般形式即可得解.【详解】由题意,得平移后的抛物线为:即∴故答案为:4.【点睛】此题主要考查根据抛物线的平移规律求参数,熟练掌握,即可解题.三、解答题(共66分)19、1+、1-【详解】X=1+或者x=1-20、答案见解析.【分析】根据主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,即可得到结果.【详解】解:如图所示:【点睛】本题考查几何体的三视图,作图能力是学生必须具备的基本能力,因为此类问题在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.21、能,.【分析】根据平均数的定义求解可得后两次数字之和为8或9;根据题意画出树状图,再利用概率公式求其概率.【详解】能设第4次、第5次转出的数字分别为和,根据题意得:,解得:,所以后两次数字之和为8或9;画出树状图:共有9种等情况数,其中“两次数字之和为8或9”的有5种,所以.【点睛】本题考查用列表法或树状图的方法解决概率问题;求一元一次不等式组的方法以及概率公式的运用.求出事件的所有情况和符合条件的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.22、(1)A(﹣1,0),B(l,0),C(0,﹣1);(1)P(,);(3)(-1,-1);2【分析】(1)令x=0,y=0,代入函数解析式,即可求解;
(1)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.
(3)过点M作MN⊥x轴与点N,设点M(x,x1+x-1),则AN=x+1,ON=-x,OB=1,OC=1,MN=-(x1+x-1)=-x1-x+1,根据S四边形ABCM=S△AOM+S△OCM+S△BOC构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)由y=0,得x1+x﹣1=0解得x1=﹣1,x1=l,∴A(﹣1,0),B(l,0),由x=0,得y=﹣1,∴C(0,﹣1).(1)连接AC与对称轴的交点即为点P.设直线AC为y=kx+b,则,得k=﹣l,∴y=﹣x﹣1.对称轴为x=,当x=时,y=-()﹣1=,∴P(,).(3)过点M作MN丄x轴与点N,设点M(x,x1+x﹣1),则OA=1,ON=﹣x,OB=1,OC=1,MN=﹣(x1+x﹣1)=﹣x1﹣x+1,S四边形ABCM=S△AOM+S△OCM+S△BOC=×1×(﹣x1﹣x+1)+×1(﹣x)+×1×1=﹣x1﹣1x+3=﹣(x+1)1+2.∵a=﹣1<0,∴当x=﹣1时,S四边形ABCM的最大值为2.∴点M坐标为(﹣1,﹣1)时,S四边形ABCM的最大值为2.【点睛】本题考查二次函数综合题、待定系数法、两点之间线段最短、最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决在性质问题,学会构建二次函数解决最值问题.23、(1)①,②.(2)无变化;理由参见解析.(3),.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【详解】(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,BD=8÷2=4,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《大项目保险的拓展》课件
- 特种作业监护培训
- 普通高校毕业生就业三方协议模板
- 《太平洋鸿鑫人生》课件
- 消防工程承包合同范本2篇
- 《软件项目初始》课件
- 建筑工程施工用铲车租赁合同(04年)
- 2024年度融资租赁合同标的为航空器租赁3篇
- 《无因管理概述》课件
- 燃气中青年干部培训班
- 广西壮族自治区示范性高中2024-2025学年高二上学期11月期中物理试题 含解析
- 2024-2030年中国土壤修复行业发展机遇规划研究报告
- 《企业ESG管理体系》
- 2024年广西公需科目参考答案
- 2024-2030年航空航天专用刀具行业市场现状供需分析及投资评估规划分析研究报告
- 硬件研发工程师生涯人物访谈报告
- 网络传播法规(自考14339)复习必备题库(含答案)
- 全过程造价咨询服务实施方案
- 中医保健温通灸
- 工程施工日志封面(最新整理)
- 德朗热综合征的临床及分子诊断
评论
0/150
提交评论